1.1.3导数的几何意义69062.ppt





《1.1.3导数的几何意义69062.ppt》由会员分享,可在线阅读,更多相关《1.1.3导数的几何意义69062.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1.3导数的几何意义导数的几何意义 定义定义:函数:函数y=f(x)在在x=x0处的瞬时变化率是处的瞬时变化率是我们称它为函数我们称它为函数y=f(x)在在x=x0处的导数处的导数,记作记作:回回顾顾 由导数的意义可知由导数的意义可知,求函数求函数y=f(x)在点在点x0处的导处的导数的基本方法是数的基本方法是:在不致发生混淆时,在不致发生混淆时,导函数导函数也简称也简称导数导数什么是导函数?由函数由函数f(x)在在x=x0处求导数的过程可以看到处求导数的过程可以看到,当当x=x0时时,f(x0)是一个确定的数是一个确定的数.那么那么,当当x变化时变化时,f(x0)便是便是x的一个函数的一
2、个函数,我们叫它我们叫它为为f(x)的导函数的导函数.即即:下面来看导数的几何意义y=f(x)PQMxyOxyPy=f(x)QMxyOxy 如图如图,曲线曲线C是函数是函数y=f(x)的图象的图象,P(x0,y0)是曲线是曲线C上上的的任意一点任意一点,Q(x0+x,y0+y)为为P邻近一点邻近一点,PQ为为C的割线的割线,PM/x轴轴,QM/y轴轴,为为PQ的的倾斜角倾斜角.斜率!PQoxyy=f(x)割割线线切线切线T请看当点请看当点Q沿着曲线逐渐向点沿着曲线逐渐向点P接近时接近时,割线割线PQ绕着绕着点点P逐渐转动的情况逐渐转动的情况.我们发现我们发现,当点当点Q沿着曲线无限接近点沿着曲
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1 导数 几何 意义 69062

限制150内