人教版九年级数学上册复习课件.ppt
《人教版九年级数学上册复习课件.ppt》由会员分享,可在线阅读,更多相关《人教版九年级数学上册复习课件.ppt(129页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 一元二次方程一元二次方程复习复习 第一关知识要点说一说一一元元二二次次方方程程一元二次方程的定义一元二次方程的定义一元二次方程的解法一元二次方程的解法一元二次方程的应用一元二次方程的应用方程两边都是整式方程两边都是整式ax+bx+c=0ax+bx+c=0(a a 0 0)只含有一个未知数只含有一个未知数求知数的最高次数是求知数的最高次数是2 2配配 方方 法法求求 根根 公式法公式法直接开平方法直接开平方法因因 式式 分解法分解法二次项系数为二次项系数为1,而一次项系数为偶数,而一次项系数为偶数第二关基础题目轮一轮明辨是非明辨是非判断下列方程是不是一元二次方程,若不是一元二判断下列方程是不是
2、一元二次方程,若不是一元二次方程,请说明理由?次方程,请说明理由?1、(x1)、x22x=8、xy+5、xx6、ax2+bx+c3、x2+2 22 2、若方程、若方程是关于是关于x x的一元二次方程,则的一元二次方程,则m m的值为的值为 。3.3.若若x=2x=2是方程是方程x x2 2+ax-8=0+ax-8=0的解,则的解,则a=a=;2 24、写出一个根为、写出一个根为5的一元二次方程的一元二次方程 。1 1、若、若 是关于是关于x x的一元二次的一元二次方程则方程则m m 。2填一填第三关典型例题显一显用适当的方法解下列方程用适当的方法解下列方程因式分解法:因式分解法:1.1.用因式
3、分解法的用因式分解法的条件条件是是:方程左边能方程左边能够分解为两个因式的积够分解为两个因式的积,而右边等于而右边等于0 0的的方程方程;2.2.形如形如:ax2+bx=o(即常数即常数C=0).因式分解法的一因式分解法的一般般步骤步骤:一移一移-方程的右边方程的右边=0;=0;二分二分-方程的左边因式分解方程的左边因式分解;三化三化-方程化为两个一元一次方程方程化为两个一元一次方程;四解四解-写出方程两个解写出方程两个解;直接开平方法:直接开平方法:1.1.用开平方法的用开平方法的条件条件是是:缺少一次项的缺少一次项的一元二次方程,用开平方法比较方便一元二次方程,用开平方法比较方便;2.2.
4、形如形如:ax2+c=o (即没有一次项即没有一次项).a(x+m)2=k配方法:配方法:用配方法的用配方法的条件条件是是:适应于任何一个一适应于任何一个一元二次方程,但是在没有特别要求的情元二次方程,但是在没有特别要求的情况下,除了形如况下,除了形如x2+2kx+c=0 用配方法用配方法外,一般不用外,一般不用;(;(即二次项系数为即二次项系数为1 1,一次项系数是偶数。)一次项系数是偶数。)配方法的一般配方法的一般步步骤骤:一化一化-把把二次项系数二次项系数化为化为1(方程的两边同方程的两边同 时除以二次项系数时除以二次项系数a)二移二移-把常数项移到方程的把常数项移到方程的右边右边;三配
5、三配-把方程的左边配成一个把方程的左边配成一个完全平方式完全平方式;四开四开-利用利用开平方法开平方法求出原方程的两个解求出原方程的两个解.一化、二移、三配、四开、五解一化、二移、三配、四开、五解.公式法:公式法:用公式法的用公式法的条件条件是是:适应于任何一个一适应于任何一个一元二次方程,先将方程化为一般形式,元二次方程,先将方程化为一般形式,再求出再求出b2-4ac的值,的值,b2-4ac0则方程有则方程有实数根,实数根,b2-4ac0 时,方程有两个不相等的实数根;时,方程有两个不相等的实数根;当当b2-4ac=0 时,方程有两个相等的实数根;时,方程有两个相等的实数根;当当b2-4ac
6、0a0当当x=0,yx=0,y最小最小=0=0a0a0当当x=-x=-m,ym,y最小最小=0=0a0a0当当x=-x=-m,ym,y最小最小=k=ka0a0,x x-m,m,y y随随x x增大而减小增大而减小 x-m,y随随x增大而增大增大而增大a0a0,x x-b/2a,b/2a,y y随随x x增大而减小增大而减小 x-b/2a,y随随x增大而增大而增大增大2.2.二次函数图象的画法二次函数图象的画法顶点坐标顶点坐标与与X轴的交点坐标轴的交点坐标与与Y轴的交点坐标及它轴的交点坐标及它关于对称轴的对称点关于对称轴的对称点(,)(x1,0)(x2,0)(0,c)(,c)(,)x1x2Oxy
7、c(,c)对称轴直线对称轴直线x=x=(1)y=2(x+2)2是由是由 向向 平移平移 个单位得到个单位得到(2)y=-2x2-2是由是由 向向 平移平移 个单位得到个单位得到(3)y=-2(x-2)2+3是由是由 向向 平移平移 个单位个单位,再向,再向 平移平移 个单位得到个单位得到(4)y=2x2+4x-5是由是由 向向 平移平移 个单位,再向个单位,再向 平移平移 个单位得到个单位得到(5)y=2x2向左平移向左平移2个单位,再向下平移个单位,再向下平移3个单位得到个单位得到函数解析式是函数解析式是 。y=2(x+2)2-3y=2x2左左2y=-2x2下下2y=-2x2右右2上上3y=
8、2x2左左1下下7(6 6)已知二次函数)已知二次函数y=xy=x2 2-4x-5 -4x-5 ,求下列问题求下列问题y=-2(x+1)2-8开口方向开口方向对称轴对称轴顶点坐标顶点坐标最值最值怎样平怎样平移移xx在什么范围,在什么范围,y y随随x x增大而增大增大而增大与坐标轴的交点坐标与坐标轴的交点坐标与与x x轴的交点坐标为轴的交点坐标为A,B,A,B,与与y y轴的交点为轴的交点为C,C,则则S SABCABC=.在抛物线上是否存在点在抛物线上是否存在点P,P,使得使得S SABPABP是是ABCABC面积的面积的2 2倍倍,若存在,请求出点若存在,请求出点P P的坐标,若不存在,请
9、说明的坐标,若不存在,请说明理由理由当当x为何值时,为何值时,y0(7 7)已知二次函数)已知二次函数y=xy=x2 2+bx+c+bx+c的顶点坐标(的顶点坐标(1 1,-2-2),求),求b b,c c的值的值(8 8)已知二次函数)已知二次函数y=xy=x2 2+4x+c+4x+c的顶点坐标在的顶点坐标在x x轴上,轴上,求求c c的值的值(9 9)已知二次函数)已知二次函数y=xy=x2 2+4x+c+4x+c的顶点坐标在直线的顶点坐标在直线y=2x+1y=2x+1上,求上,求c c的值的值2 2、已知抛物线顶点坐标(、已知抛物线顶点坐标(m,km,k),通常),通常设抛物线解析式为设
10、抛物线解析式为_3 3、已知抛物线与、已知抛物线与x x 轴的两个交点轴的两个交点(x(x1 1,0),0)、(x(x2 2,0),0),通常设解析式为通常设解析式为_1 1、已知抛物线上的三点,通常设解析式为、已知抛物线上的三点,通常设解析式为_y=axy=ax2 2+bx+c+bx+c(a0)(a0)y=a(x+m)y=a(x+m)2 2+k+k(a0(a0)y=a(x-xy=a(x-x1 1)(x-x)(x-x2 2)(a0(a0)如何求抛物线解析式常用的三种方法如何求抛物线解析式常用的三种方法一般式一般式顶点式顶点式交点式或两根式交点式或两根式4.4.公式法公式法1.1.已知一个二次函
11、数的图象经过点已知一个二次函数的图象经过点(0 0,0 0),(),(1 1,33),(),(2 2,88)。)。如何求下列条件下的二次函数的解析式如何求下列条件下的二次函数的解析式:3.3.已知二次函数的图象的对称轴是直线已知二次函数的图象的对称轴是直线x=3,x=3,并且经过点并且经过点(6,0),(6,0),和和(2,12)(2,12)2.2.已知二次函数的图象的顶点坐标为已知二次函数的图象的顶点坐标为(2 2,3 3),且图象过点(),且图象过点(3 3,2 2)。)。4.4.矩形的周长为矩形的周长为6060,长为,长为x x,面积为,面积为y y,则,则y y关于关于x x的函数关系
12、式的函数关系式 。如何判别如何判别a a、b b、c c、b b2 2-4ac-4ac,2a+b2a+b,a+b+ca+b+c的符的符号号(1)a的符号:的符号:由抛物线的开口方向确定由抛物线的开口方向确定开口向上开口向上a0开口向下开口向下a0交点在交点在x轴下方轴下方c0与与x轴有一个交点轴有一个交点b2-4ac=0与与x轴无交点轴无交点b2-4ac0A abc0B a0,bB a0,b2 2-4ac0-4acb ab 0 0),今在四边上分别选取),今在四边上分别选取E E、F F、G G、H H四点,且四点,且AE=AH=CF=CG=xAE=AH=CF=CG=x,建一个花园,如何设计,
13、可使,建一个花园,如何设计,可使花园面积最大?花园面积最大?DCABGHFEab b4.4.(20142014新疆生产建设兵团改编)新疆生产建设兵团改编)如图,在一面靠墙的空地上用如图,在一面靠墙的空地上用长为长为2424米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽圃的宽ABAB为为x x米,面积为米,面积为S S平方米。平方米。(1)(1)求求S S与与x x的函数关系式及自变量的取值范围;的函数关系式及自变量的取值范围;(2)(2)当当x x取何值时所围成的花圃面积最大,最大值是多少?取何值时所围成的花圃面积最大,最大值是多少?(3
14、)(3)若墙的最大可用长度为若墙的最大可用长度为8 8米,则求围成花圃的最大面积米,则求围成花圃的最大面积。ABCD解:解:(1)AB(1)AB为为x x米、篱笆长为米、篱笆长为2424米米 花圃宽为(花圃宽为(24244x4x)米)米 (3)墙的可用长度为墙的可用长度为8米米(2)当当x 时,时,S最大值最大值 36(平方米)(平方米)S Sx x(24244x4x)4x4x2 224 x 24 x (0 x60 x6)0244x 8 4x6当当x4m时,时,S最大值最大值32 平方米平方米5.5.某企业投资某企业投资100100万元引进一条产品加工生产线,若不万元引进一条产品加工生产线,若
15、不计维修、保养费用,预计投产后每年可创利计维修、保养费用,预计投产后每年可创利3333万。该万。该生产线投产后,从第生产线投产后,从第1 1年到第年到第x x年的维修、保养费用累年的维修、保养费用累计为计为y(y(万元万元),且,且y=axy=ax2 2+bx,+bx,若第若第1 1年的维修、保养年的维修、保养 费用为费用为2 2万元,到第万元,到第2 2年为年为6 6万元。万元。(1 1)求)求y y的解析式;的解析式;(2 2)投产后,这个企业在第几年就能收回投资?)投产后,这个企业在第几年就能收回投资?解解:(1)由)由题题意,意,x=1时时,y=2;x=2时时,y=2+4=6,分分别别
16、代入代入y=ax2+bx,得得a+b=2,4a+2b=6,解得解得:a=1,b=1,y=x2+x.(2)设设g33x-100-x2-x,则则g=-x2+32x-100=-(x-16)2+156.由于当由于当1x16时时,g随随x的增大而增大,故当的增大而增大,故当x=4时时,即第,即第4年可年可收回投收回投资资。6.6.某商场将进价某商场将进价某商场将进价某商场将进价4040元一个的某种商品按元一个的某种商品按元一个的某种商品按元一个的某种商品按5050元一个售出元一个售出元一个售出元一个售出时,能卖出时,能卖出时,能卖出时,能卖出500500个,已知这种商品每个涨价一元,销量个,已知这种商品
17、每个涨价一元,销量个,已知这种商品每个涨价一元,销量个,已知这种商品每个涨价一元,销量减少减少减少减少1010个,为赚得最大利润,售价定为多少?最大利个,为赚得最大利润,售价定为多少?最大利个,为赚得最大利润,售价定为多少?最大利个,为赚得最大利润,售价定为多少?最大利润是多少?润是多少?润是多少?润是多少?分析分析分析分析:利润:利润=(每件商品所获利润)(每件商品所获利润)(销售件数)(销售件数)设每个涨价设每个涨价x x元,元,那么那么(3)销售量可以表示为)销售量可以表示为(1)销售价可以表示为)销售价可以表示为(50+x)元)元(x 0 x 0,且,且为整数)为整数)(500-10
18、x)(500-10 x)个(2)一个商品所获利)一个商品所获利润润润润可以表示为可以表示为(50+x-40)元)元(4)共获利)共获利润润润润可以表示为可以表示为(50+x-40)(500-10 x)(50+x-40)(500-10 x)元元元元7.7.如图,已知直线如图,已知直线 y=-y=-x+3x+3与与X X轴、轴、y y轴分别交于点轴分别交于点B B、C C,抛物线,抛物线y=-xy=-x2 2+bx+c+bx+c经过点经过点B B、C C,点,点A A是抛物线是抛物线与与x x轴的另一个交点。轴的另一个交点。(1)求抛物线的解析式;)求抛物线的解析式;解:令解:令y=0,则,则 x
19、+3=0,x=3,B(3,0),),令令x=0,则则y=3,C(0,3),),b=2c=3解得解得-9+3b+c=0c=3得得 y=-x2+2x+3(3,0)(0,3)xyoABC7.7.如图,已知直线如图,已知直线 y=-y=-x+3x+3与与X X轴、轴、y y轴分别交于点轴分别交于点B B、C C,抛物线,抛物线y=-xy=-x2 2+bx+c+bx+c经过点经过点B B、C C,点,点A A是抛物线是抛物线与与x x轴的另一个交点。轴的另一个交点。(1)求抛物线的解析式;)求抛物线的解析式;(2)若抛物线的顶点为)若抛物线的顶点为D,求四边形,求四边形ABDC的面积;的面积;(3,0)
20、(0,3)BCDxyoAE(1,4)(1,0)(-1,0)解:解:S四边形四边形ABDC=SAOC+S梯形梯形OEDC+S EBD=9=AO OC +(OC+ED)OE+EB ED=13+(3+4)1+3-1 4 7.7.如图,已知直线如图,已知直线 y=-y=-x+3x+3与与X X轴、轴、y y轴分别交于点轴分别交于点B B、C C,抛物线,抛物线y=-xy=-x2 2+bx+c+bx+c经过点经过点B B、C C,点,点A A是抛物线是抛物线与与x x轴的另一个交点。轴的另一个交点。(4)第(第(3)题改为)题改为在直线在直线y=-x+3上是否存在上是否存在点点P,使,使SPAC=S P
21、AB?若存在,求出点?若存在,求出点P的坐标;若不存在,说明理由。的坐标;若不存在,说明理由。答案一样吗?答案一样吗?(3,0)(0,3)xyoABCP(3)若点)若点P在直线在直线 BC上且上且SPAC=S PAB,求求P的坐标;的坐标;Qy(3,0)(0,3)xoABCPQP(3,0)(0,3)xyoABCQ这个定点称为这个定点称为旋转中心旋转中心,转动的角称为,转动的角称为旋转角旋转角。1 1、概念:、概念:在平面内,在平面内,把一个图形绕着某一个把一个图形绕着某一个定点定点转转动一个角度动一个角度的图形变换叫做的图形变换叫做旋转旋转。()图形中的每一点都绕着旋转中心旋转同样大小的()图
22、形中的每一点都绕着旋转中心旋转同样大小的角度角度3、旋转的基本性质旋转的基本性质()()图形的形状和大小图形的形状和大小都没有发生变化都没有发生变化()对应线段相等,对应角相等()对应线段相等,对应角相等()对应点到旋转中心的距离相等()对应点到旋转中心的距离相等2 2、图形旋转的三个要素:、图形旋转的三个要素:(1 1)旋转中心,()旋转中心,(2 2)旋转方向)旋转方向(3 3)旋转角度)旋转角度 4 4、把一个图形绕着某一点旋转、把一个图形绕着某一点旋转180180度度,如果它能够和如果它能够和 另一个图形重合另一个图形重合,那么那么,我们就说这两个图我们就说这两个图关于这个点关于这个点
23、对称对称或或中心对称中心对称,这个点就叫这个点就叫对称中心对称中心,这两个图形这两个图形中中的的对应点对应点,叫做叫做关于中心的对称点关于中心的对称点.性质:(1)在成中心对称的两个图形中在成中心对称的两个图形中,连接对称点的线段都连接对称点的线段都经过对称中心经过对称中心,并且被对称中心平分并且被对称中心平分.反过来反过来,如果两个图形的对应点连成的线段都经过某一如果两个图形的对应点连成的线段都经过某一点点,并且都被该点平分并且都被该点平分,那么这两个图形一定关于这一点那么这两个图形一定关于这一点成中心对称成中心对称.(2 2)关于中心对称的两个图形是全等形。关于中心对称的两个图形是全等形。
24、5 5.中心对称图形的定义中心对称图形的定义:把一个图形绕着某一点旋转把一个图形绕着某一点旋转1801800 0,如果如果旋转后的图形能够和原来的图形相互重合旋转后的图形能够和原来的图形相互重合,那么那么这个图形叫中心对称图形。这个图形叫中心对称图形。6 6.中心对称与中心对称图形是两个既有联系又有中心对称与中心对称图形是两个既有联系又有 区别的概念区别的概念 区别区别:中心对称指两个全等图形的相互位置关系中心对称指两个全等图形的相互位置关系 中心对称图形指一个图形本身成中心对称中心对称图形指一个图形本身成中心对称联系联系:如果将中心对称图形的两个图形看成一个整如果将中心对称图形的两个图形看成
25、一个整体体,则它们是中心对称图形则它们是中心对称图形 如果将中心对称图形如果将中心对称图形,把对称的部分看成把对称的部分看成两个图形两个图形,则它们是关于中心对称。则它们是关于中心对称。7 7、两个点关于原点对称时,它们的坐标、两个点关于原点对称时,它们的坐标符号相反符号相反,即点即点P P(x,x,y y)关于原点关于原点OO的对称点的对称点P P/(-x,x,-y-y)如图,四边形如图,四边形AOBC,它绕它绕O点旋转得点旋转得 到四边形到四边形DOEF.在在这个旋转过程中:这个旋转过程中:(1)旋转中心是什么)旋转中心是什么?(2)经过旋转,点)经过旋转,点A、B分别移动到什么位置?分别
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 复习 课件
限制150内