食品酶学酶的分子结构与催化功能精选课件.ppt
《食品酶学酶的分子结构与催化功能精选课件.ppt》由会员分享,可在线阅读,更多相关《食品酶学酶的分子结构与催化功能精选课件.ppt(65页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于食品酶学酶的分子结构与催化功能第一页,本课件共有65页第一节 酶分子组成酶酶单纯酶单纯酶结合酶结合酶(全酶)(全酶)=酶蛋白酶蛋白+辅因子辅因子辅因子辅因子辅酶辅酶 与酶蛋白结合得比较松的小分子有机物。辅基辅基 与酶蛋白结合得紧密的小分子有机物。金属激活剂金属激活剂 金属离子作为辅助因子。蛋白质具有一级、二级、三级、四级结构以及大分子组织形式。酶的催化专一性主要决定于酶蛋白部分。辅因子通常是作为电子、原子或某些化学基团的载体。第二页,本课件共有65页第二节 酶的结构与功能酶蛋白的结构,包括一级结构和高级结构,与酶的催化功能密切相关,结构的改变会引起酶催化作用的改变或者丧失。研究酶结构与功能
2、的关系是酶学的核心课题。第三页,本课件共有65页 一、酶的活性中心(一)活性中心(一)活性中心酶蛋白上只有少数氨基酸残基参与酶对底物的结合和催化,这些相关氨基酸残基在空间上比较靠近,形成一个与酶显示活性直接有关的区域(在酶分子表面上具有三维结构的特定区域),称为酶的活性中心,又称活性部位(active site)。构成活性中心的化学基团实际上就是酶蛋白氨基酸残基的侧链,有时尚包括肽链末端的氨基酸。胰凝乳蛋白酶活性中心含有Ile16、His57、Asp102、Asp194、ser195。在酶原形式时它们分散在一条肽链上,但酶原经激活后,形成A、B、C三条肽链。前3个残基在B链,后2个在C链。依靠
3、肽链的折叠,包括肽链间的二硫键,使这些互相远离的基团靠近。第四页,本课件共有65页(二)必需基团酶活性中心的一些化学基团为酶发挥催化作用所必需,故称为必需基团。在酶活性中心以外的区域,也有不和底物直接作用的必需基团,称为活性中心外的必需基团。这些基团与维持整个酶分子的空间构象有关,间接地对酶的催化活性发挥作用。第五页,本课件共有65页Koshland将酶分子中的氨基酸残基或其侧链基团分成四类:1.接触残基(contact residues)如R1、R2、R6、R8、R9、R163、R164和R165。和底物直接接触,参与底物的化学转变,是活性中心的主要组成部分。这些残基中的一个或几个原子与底物
4、分子的一个或多原子接触的距离都是一键距离(即0.150.2nm)之内。2.辅助残基(auxiliary residues)如R4,虽未直接与底物接触,但在使酶与底物相互结合以及在辅助接触残基发挥作用上起着一定的作用。辅助残基也是活性中心一个不可缺少的组成部分。接触和辅助残基组成酶的活性中心。接触残基的侧链中,有的可能担负和底物结合的作用,称为结合基团;有的可能参与使底物转变成产物的催化作用,称为催化基团。结合基团也可参与催化作用辅助残基,因不与底物接触,只能参与辅助催化基团的作用,如质子的供给或接受等。第六页,本课件共有65页3、结构残基(structural residues)如R10、R1
5、62、R169等,这些残基在维持酶蛋白形成一种有规则的空间构象方面起着重要作用。对酶活性的显示也有一定贡献,但离底物分子较远,不能列人活性中心的范围,属于活性中心以外的必需基团。4、非贡献残基(non-contributing residues)在酶的活性中心外,不参与酶的催化功能,对酶活性的显示不起作用。如图中的R3、R5、R7以及图中未列入的一些残基,这些残基可以被取代,甚至把它们去掉也不会对酶的构象和功能产生重大改变。第七页,本课件共有65页(三)酶活性中心的特点(三)酶活性中心的特点2.2.都是酶分子表面的一个凹穴,有一定的大小和形状,都是酶分子表面的一个凹穴,有一定的大小和形状,但不
6、是刚性的,而具有一定的柔性。但不是刚性的,而具有一定的柔性。3.3.活性中心为非极性的微环境,有利于与底物结合。活性中心为非极性的微环境,有利于与底物结合。1.1.活性中心在酶分子总体积中只占相当小的部分活性中心在酶分子总体积中只占相当小的部分(约(约1%1%2%2%),相当于),相当于2 2 3 3个氨基酸残基。个氨基酸残基。第八页,本课件共有65页(三)酶活性中心的特点(三)酶活性中心的特点4.4.底物与酶通过形成较弱键力的次级键相互作用底物与酶通过形成较弱键力的次级键相互作用并结合到酶的活性中心。并结合到酶的活性中心。5.5.酶的活性部位并不是和底物的几何图形正好吻酶的活性部位并不是和底
7、物的几何图形正好吻合,而是在酶与底物结合的过程中,底物分子或合,而是在酶与底物结合的过程中,底物分子或酶分子或它们两者的构象同时发生一定变化后才酶分子或它们两者的构象同时发生一定变化后才相互契合,这时催化基团的位置也正好处于所催相互契合,这时催化基团的位置也正好处于所催化底物的敏感化学键部位。化底物的敏感化学键部位。第九页,本课件共有65页二、酶的一级结构与催化功能的关系一级结构是酶的基本化学结构,是催化功能的基础。一级结构的改变将使酶的催化功能发生相应的改变。第十页,本课件共有65页酶原是活性酶的前体,需经激活才显示出酶的性。由酶原转变为活性酶,可通过酶或氢离子的催化而实现。胰蛋白酶原在胰蛋
8、白酶或肠激酶的作用下,使酶原变为活性的酶。酶原转变成酶时,一级结构仅仅发生微小的变化,在碳链的N-末端失去了一个六肽,从而使隐蔽的活性基团解放出来,形成了活性部位。第十一页,本课件共有65页三、酶的二级和三级结构与催化功能的关系二级、三级结构是所有酶都必须具有的空间结构,是维持酶的活性部位所必须的构型。当酶蛋白的二级和三级结构彻底改变,就可使酶遭受破坏而丧失其催化功能。二级和三级结构的改变,也可以使酶形成正确的催化部位而发挥其催化功能。由于底物的诱导而引起酶蛋白空间结构发生某些精细的改变,与适应的底物相互作用,从而形成正确的催化部位,使酶发挥其催化功能诱导契合学说的基础。第十二页,本课件共有6
9、5页1.酶的变性和失活酶受到变性因素的作用,空间结构破坏,其活性中心的构象也随着改变,酶因此失活。有时只要维持酶活性中心各基团的相对位置,即使一级结构受到轻微破坏,酶活性也不会改变。牛胰核糖核酸酶(RNA酶)有4对二硫键及很多氢键维持其空间构象;活性中心中有两个组氨酸(His12及His119)。用枯草杆菌蛋白酶处理,被水解成为N端的肽(S肽)和其余的104肽(S蛋白)两个片段,分别含有His12和His119,两者单独存在时均无活力,但在pH7.0的介质中,将两者1:1混合,并使S肽与S蛋白间形成氢键及疏水键连接,则20与21位之间的肽键虽不能恢复,但活力能恢复。这是因为S肽上的His12又
10、与s蛋白上的His119互相靠近,恢复了原来活性中心的空间构象。第十三页,本课件共有65页核糖核酸酶在其核糖核酸酶在其C C末端用羧酸酶去掉末端用羧酸酶去掉3 3个氨基酸时,对酶的个氨基酸时,对酶的活性几乎没有影响,而若用胃蛋白酶去掉活性几乎没有影响,而若用胃蛋白酶去掉C C末端的末端的4 4个氨基个氨基酸时,则酶活性全部丧失。酸时,则酶活性全部丧失。核糖核酸酶,有活性核糖核酸酶,有活性没活性没活性有活性有活性第十四页,本课件共有65页酶蛋白的变性有时是可逆的。当某些化学变性剂去除后,酶可以恢复原有的空间构象,并恢复酶活力。牛胰核糖核酸酶经尿素及-巯基乙醇处理后发生变性,当透析去除变性剂后,酶
11、可自动折叠成具有催化活性的原始形式。第十五页,本课件共有65页2.活性中心的挠性近年来的研究证明:酶蛋白活力的变化和变性时空间构象的改变并不是同步的。用紫外分光差光谱、荧光光谱、圆二色光谱、光散射和内埋巯基暴露等手段研究肌酸激酶、核糖核酸酶、乳酸脱氢酶及3一磷酸甘油醛脱氢酶等在盐酸胍和尿素溶液中变性不同时间的构象变化(即肽链去折叠的过程),同时测定酶活力的下降,发现:酶活力的丧失往往先于上述常规手段所测出的酶分子的整体构象变化。热变性实验同样证明,酶活性丧失在前,整体构象变化在后。第十六页,本课件共有65页进一步用探测活性中心构象的方法来研究(如3-磷酸甘油醛脱氢酶活性中心的巯基被羧甲基化后再
12、经激发光照,可在活性中心生成具有荧光的NAD共价结合物,可通过荧光改变来探测活性中心的构象变化),结果发现,活性中心的构象的改变先于酶分子整体的构象改变,而且与活力丧失几乎同步。即:酶的活性中心的空间结构相对酶分子整体而言,处于分子中一个挠性的局部区域,是由较弱的化学键维持其空间结构,对各种变性因素较为敏感。低浓度的变性剂在一定条件有时反而使酶激活,也可证明活性中心的可塑性。第十七页,本课件共有65页3.酶分子的结构域结构域(domain)是指蛋白质肽链中一段较独立的具有完整、致密立体结构的区域,一般由40400个氨基酸残基组成。大多数酶都有一个以上的结构域,如弹性蛋白酶两个十分类似的结构域,
13、而木瓜蛋白酶则有两个很不一样的结构域。结构域在蛋白质肽链的折叠和变构调节等现象中具有重要作用。不同的结构域常有不同的功能。在大多数蛋白激酶中,两个不同功能的区结构域一般都存在于一条肽链中,形成催化结构域和调节结构域,如cGMP依赖的蛋白激酶G(PKG),钙-甘油二酶(佛波酯)一磷脂依赖的蛋白激酶C(PKC)以及具有酪氨酸蛋白激酶活性的表皮生长因子受体,其调节结构域都位于N侧,催化结构域位于C侧。第十八页,本课件共有65页有一些多功能酶,其不同酶活力来自不同的结构域,如大肠杆菌亮氨酰-tRNA合成酶的C端切去6000分子量的片段后丧失了tRNA氨酰化的活性,而但保留氨基酸活化和ATP-焦磷酸交换
14、的活性。已发现与凝血及纤维蛋白溶解有关的蛋白酶由6种不同的结构域以不同的组合方式装配而成,包括:一羧基谷氨酸域、表皮生长因子域、三环(kringle)结构域、指(finger)结构域和接触因子(CF)域以及类胰蛋白酶的催化域。不同蛋白酶中的相同结构域则往往有相同或类似的功能。可以把结构域看成是酶蛋白中的一个功能单位。对结构域的研究正方兴未艾,将来有可能利用不同的结构域用DNA重组技术组装成新的人工酶蛋白。第十九页,本课件共有65页四、酶的四级结构与催化功能的关系具有四级结构的酶,按其功能可分为两类:一类与催化作用有关,另一类与代谢调节关系密切。只与催化作用有关的具有四级结构的酶:由数个相同的亚
15、基组成,每个亚基都有一个活性中心。四级结构完整时,酶的催化功能才会充分发挥出来。当四级结构被破坏时,亚基被分离,若采用的分离方法适当,被分离的亚基仍保留着各自的催化功能。天冬氨酸转氨酶用温和的琥珀酸的方法使四级结构解离时,分离得到的亚基仍各自保持催化功能;当用强烈的条件如酸、碱、表面活性剂等破坏其四级结构时,得到的亚基没有催化活性。与代谢调节有关的具有四级结构的酶:其组成亚基中,有的亚基具有调节中心(激活中心和/或抑制中心),使酶的活性受到激活或者抑制,调节酶反应的速度和代谢过程。第二十页,本课件共有65页第三节 酶催化作用的基本理论有过各种酶催化学说。早期学说的中心思想是底物的活化,到世纪6
16、0年代,随着新技术的发展,从而亦考虑到在催化反应中,酶本身功能基团的作用。酶在进行催化反应时,首先和底物形成ES络合物,这样分子间的催化反应就变为分子内的催化反应。第二十一页,本课件共有65页一、酶底物复合物酶与底物结合形成中间复合物(或称中间络合物)。复合物的形成是专一性决定的过程,也是变分子间反应为分子内反应的过程,同时又是诱导契合过程。由于中间复合物的形成,酶和底物的结构都将发生有利于催化反应进行的变化。第二十二页,本课件共有65页(一)酶一底物复合物存在的证据光谱技术是证明ES复合物存在的有效手段。醇脱氢酶(ADH)的底物NADH在游离状态下,于340nm处有一吸收峰,但加入ADH后,
17、吸收峰移向328nm,再加入巯基试剂对氯汞苯甲酸又使吸收峰回到340nm,证明NADH和ADH的结合是通过ADH的巯基介导的。催化丝氨酸和吲哚合成色氨酸的色氨酸合成酶含有磷酸吡哆醛辅基,后者能在激发下发出荧光。当单加入丝氨酸而尚无吲哚时,其荧光强度显著增加,再加入吲哚,就使荧光淬灭,低于单独酶的荧光,这就证明酶-丝氨酸复合物和酶-丝氨酸-吲哚复合物的存在。第二十三页,本课件共有65页大分子底物和酶的复合物可用电子显微镜直接观察DNA聚合酶与DNA的复合物。即使小分子底物也可用X射线衍射法获得酶-底物复合物的信息,如羧肽酶A是通过哪些残基和底物甘氨酰-L-酪氨酸结合的以及溶菌酶的最小六糖底物是怎
18、样“躺”在酶分子表面的狭长凹穴中,目前都已研究清楚。有些双底物的酶可在只有一种底物的情况下加以提纯或结晶,如3一磷酸甘油醛脱氢酶需要加入一定量的NAD+才能结晶,这也是酶一底物复合物的直接证据。现已充分证明:底物是通过酶的活性中心和酶结合的。第二十四页,本课件共有65页(二)酶与底物形成复合物的作用力酶与底物的结合与稳定酶分子的三维结构的力是相同的。1.离子键底物分子上的电荷和酶分子上相反电荷之间的作用,离子键受溶剂、盐浓度、酶活性部位的微环境以及酶活性部位的侧链基团等因素的影响。2.氢键底物和酶结合的一种重要的相互作用力。酶分子可以在主链与侧链之间以及某些侧链之间形成氢键。氢键在水中仍然可以
19、保持,但强度减弱。在酸、碱液中氢键不存在。在高温或各种变性剂的作用下,氢键会被破坏。3.范德华力一种非专一性的相互作用力,比离子键和氢键都弱。酶与底物之间的有效范德华引力作用,,只有在它们相互之间处于立体互补的情况下才能发生作用。在酶和底物的结合过程中,许多原子基团间的范德华引力的总和将会产生相当大的作用。第二十五页,本课件共有65页二、酶的催化作用本质酶和一般催化剂的共性用量少而催化效率高;它能够改变化学反应的速度,但是不能改变化学反应平衡。酶本身在反应前后也不发生变化。酶能够稳定底物形成的过渡状态,降低反应的活化能,从而加速反应的进行。第二十六页,本课件共有65页一般催化剂一般催化剂一般催
20、化剂一般催化剂反应活化能反应活化能反应活化能反应活化能反应总能量变化反应总能量变化反应总能量变化反应总能量变化酶促反应活化能酶促反应活化能酶促反应活化能酶促反应活化能非催化反应活化能非催化反应活化能非催化反应活化能非催化反应活化能初初 态态终终 态态能能量量改改变变活活活活 化化化化 过过过过 程程程程酶促反应活化能的改变酶促反应活化能的改变过渡态过渡态第二十七页,本课件共有65页三、酶作用的专一性机制(一)(一)酶作用的专一性(底物特异性)(酶作用的专一性(底物特异性)(Substrate-specificity)(1)低低特特异异性性(Lowspecificity):不不能能辨辨别别底底物
21、物,仅仅能能对对裂裂开开的键表现特异性,如非特异性脂酶。的键表现特异性,如非特异性脂酶。(2 2)基基团团特特异异性性(Groupspecificity):对对于于相相邻邻于于特特定定基基团团的一个特殊的化学键表现出特异性。的一个特殊的化学键表现出特异性。胰蛋白酶对羧基一侧为精氨酸和赖氨酸的肽键表现特异性。胰蛋白酶对羧基一侧为精氨酸和赖氨酸的肽键表现特异性。O X-NH-CH-C-NH-CH-COOH (精氨酸或赖氨酸精氨酸或赖氨酸)|R R1 1 R R2 2第二十八页,本课件共有65页。(3 3)绝对特异性)绝对特异性(Absolutespecificity)酶仅作用于一种底物并催化一个反
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 食品 酶学酶 分子结构 催化 功能 精选 课件
限制150内