液态成形件的主要缺陷及质量控制资料讲解.ppt
《液态成形件的主要缺陷及质量控制资料讲解.ppt》由会员分享,可在线阅读,更多相关《液态成形件的主要缺陷及质量控制资料讲解.ppt(75页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、液态成形件的主要缺陷及质量控制冷却冷却凝固凝固体积收缩体积收缩缩缩 孔孔缩缩 松松应力应力热裂纹热裂纹变形变形冷裂纹冷裂纹 8-1 缩孔与缩松缩孔与缩松 8-2 气孔与夹杂气孔与夹杂 8-3 应力、变形及裂纹应力、变形及裂纹 8-4 偏析(化学成分的不均匀性)偏析(化学成分的不均匀性)8-1 缩孔与缩松缩孔与缩松 一、金属的收缩一、金属的收缩 二、缩孔与缩松的分类及特征二、缩孔与缩松的分类及特征 三、缩孔与缩松的形成机理缩孔与缩松的形成机理 四、影响缩孔与缩松的因素及防止措施四、影响缩孔与缩松的因素及防止措施 铸件在凝固过程中,由于合金的铸件在凝固过程中,由于合金的液态收缩和液态收缩和 凝固收
2、缩凝固收缩,往往在铸,往往在铸 件最后凝固的部位出现孔件最后凝固的部位出现孔 洞。容积大而集中的孔洞称为缩孔,细小而分洞。容积大而集中的孔洞称为缩孔,细小而分 散的孔洞称为缩松。散的孔洞称为缩松。收缩:收缩:金属在金属在液态、凝固态和固态液态、凝固态和固态冷却过程冷却过程中发生的中发生的体积减小现象,称为收缩体积减小现象,称为收缩,它是金,它是金属本身的物理性质,是引起缩孔、缩松、应属本身的物理性质,是引起缩孔、缩松、应力、变形、热裂和冷裂等缺陷的基本原因。力、变形、热裂和冷裂等缺陷的基本原因。一、一、金属的收缩金属的收缩 液态收缩阶段(液态收缩阶段(I)、凝固收缩阶段()、凝固收缩阶段(II
3、)、固态收缩阶段()、固态收缩阶段(III)液态收缩阶段(t浇 tL)凝固收缩阶段(tL ts或 t共起 t共终)固态收缩阶段(ts t室)金属的收缩金属的收缩三个阶段三个阶段金属从浇注温度冷却到室温所产生的体收缩为液态收缩、凝固收缩和固态收缩之和之和,即V总总V液液V凝凝V固固 (V 为体收缩率)其中,液态收缩液态收缩和和凝固凝固收缩收缩是铸件产生是铸件产生缩孔缩孔和和缩松缩松的基本原因的基本原因。固态收缩是铸件产生铸件产生应力、变形和裂纹应力、变形和裂纹的基的基本原因本原因。二、缩孔与缩松的分类及特征二、缩孔与缩松的分类及特征 缩孔主要有缩孔主要有内缩孔内缩孔和和外缩孔外缩孔两种形式。两种
4、形式。外缩孔外缩孔出现在铸件的外部或顶部,一般在铸件出现在铸件的外部或顶部,一般在铸件上部呈漏斗状,铸件壁厚很大时,有时会出上部呈漏斗状,铸件壁厚很大时,有时会出现在侧面或凹角处(图现在侧面或凹角处(图 a、b););内缩孔内缩孔产生于铸件内部(图产生于铸件内部(图 c、d),孔壁粗),孔壁粗糙不规则,可以看到发达的树枝晶末梢,一糙不规则,可以看到发达的树枝晶末梢,一般为暗黑色或褐色。般为暗黑色或褐色。1.缩缩 孔孔 a)明缩孔)明缩孔 b)凹角缩孔)凹角缩孔 c)芯面缩孔)芯面缩孔 d)内部缩孔)内部缩孔缩缩 孔孔 特特 点点常出现于纯金属纯金属、共晶成分合金共晶成分合金和凝固温温度范围较窄
5、度范围较窄的以逐层凝固方式凝固以逐层凝固方式凝固的铸造合金中;多集中在铸件的上部上部和最后凝固最后凝固的部位;铸件厚壁处厚壁处、两壁相交处及内浇口附近浇口附近等凝固较晚凝固较晚或凝固缓慢凝固缓慢的部位(称为热节),也常出现缩孔;缩孔尺寸较大尺寸较大,形状不规则形状不规则,表面不光滑表面不光滑。2.缩缩 松松 按其形态分为按其形态分为宏观缩松宏观缩松(简称缩松)和(简称缩松)和微观缩微观缩松松(显微缩松显微缩松)两类。)两类。缩松:缩松:多出现于凝固温度范围较宽的合金中,多出现于凝固温度范围较宽的合金中,常分布在铸件壁的轴线区域、缩孔附近或铸件常分布在铸件壁的轴线区域、缩孔附近或铸件厚壁的中心部
6、位。厚壁的中心部位。显微缩松:显微缩松:则在各种合金铸件中或多或少都会则在各种合金铸件中或多或少都会存在,一般出现在枝晶间和分枝之间,与微观存在,一般出现在枝晶间和分枝之间,与微观气孔难以区分,只有在显微镜下才能观察到。气孔难以区分,只有在显微镜下才能观察到。铸件热节处的缩孔与缩松铸件热节处的缩孔与缩松缩缩 松松 的的 特特 点点缩松多出现于缩松多出现于凝固温度范围较宽凝固温度范围较宽的合金中;的合金中;显微缩松一般出现在显微缩松一般出现在枝晶间枝晶间和和分枝之间;分枝之间;常分布在常分布在缩孔附近缩孔附近或铸件或铸件厚壁的中心部位;厚壁的中心部位;缩孔和缩松的危害:缩孔和缩松的危害:铸件中存
7、在的任何形态的缩孔和缩松,铸件中存在的任何形态的缩孔和缩松,都会减小铸件的受力面积,在缩孔和缩松的都会减小铸件的受力面积,在缩孔和缩松的尖角处产生应力集中,使铸件的尖角处产生应力集中,使铸件的力学性能显力学性能显著降低著降低。此外,缩孔和缩松还会。此外,缩孔和缩松还会降低铸件的降低铸件的气密性和物理化学性能。气密性和物理化学性能。因此,必须采取有效措施予以防止。因此,必须采取有效措施予以防止。三、缩孔与缩松的形成机理三、缩孔与缩松的形成机理 1.缩孔的形成2.缩松的形成1.缩缩 孔孔 的的 形形 成成 机机 理理纯金属、共晶成分合金和凝固温度范围窄的合金,在一般铸造条件下按由表及里逐由表及里逐
8、层凝固层凝固的方式凝固。由于金属或合金在冷却过程中发生的液态收缩和凝固收缩大液态收缩和凝固收缩大于固态收缩于固态收缩,从而在铸件最后凝固的部位形成尺寸较大的集中缩孔。铸件中缩孔形成过程示意图铸件中缩孔形成过程示意图2.缩松的形成机理 凝固温度范围较宽的合金,一般按照体积凝固体积凝固的方式凝固,凝固区内的小晶体很容易发展成为发达的树枝晶树枝晶。当固相达到一定数量形成晶体骨架晶体骨架时,尚未凝固的液态金属便被分割成一个个互不相通的小熔池小熔池。在随后的冷却过程中,小熔池内的液体将发生液态收缩和凝固收缩,已凝固的金属则发生固态收缩。由于熔池金属的液态收缩和凝固收缩之和大于其熔池金属的液态收缩和凝固收
9、缩之和大于其固态收缩固态收缩,两者之差引起的细小孔洞又得不到外部液体的补得不到外部液体的补充充,便在相应部位形成了分散性的细小缩孔分散性的细小缩孔,即缩松。铸铁铸件的缩孔和缩松铸铁铸件的缩孔和缩松四、影响缩孔与缩松的因素及防止措施四、影响缩孔与缩松的因素及防止措施 1.影响缩孔与缩松的因素影响缩孔与缩松的因素 2.防止铸件产生缩孔和缩松的途径防止铸件产生缩孔和缩松的途径1.影响缩孔与缩松的因素 金属的性质 铸型的冷却能力 浇注温度与浇注速度 铸件尺寸(1)金属的性质金属的性质 金属的液态收缩系数金属的液态收缩系数V液液 和和凝固收缩系数凝固收缩系数V凝凝越大,缩孔及缩松容积越大。越大,缩孔及缩
10、松容积越大。金属的固态体收缩系数金属的固态体收缩系数V固固越大,缩孔及缩松容越大,缩孔及缩松容积越小。积越小。(2)铸型条件铸型条件 铸型的激冷能力越大,缩孔铸型的激冷能力越大,缩孔及缩松容积就越小。因为铸型激冷能力越大,及缩松容积就越小。因为铸型激冷能力越大,越易造成边浇注边凝固的条件,使金属的收缩越易造成边浇注边凝固的条件,使金属的收缩在较大程度上被后注入的金属液所补充,使实在较大程度上被后注入的金属液所补充,使实际发生收缩的液态金属量减少。际发生收缩的液态金属量减少。(3)浇注条件浇注条件 浇注温度越高,金属的液浇注温度越高,金属的液态收缩越大,则缩孔容积越大;浇注速度态收缩越大,则缩孔
11、容积越大;浇注速度越缓慢,浇注时间越长,缩孔容积就越小。越缓慢,浇注时间越长,缩孔容积就越小。(4)铸件尺寸铸件尺寸 铸件壁厚越大,表面层凝铸件壁厚越大,表面层凝固后,内部的金属液温度就越高,液态收固后,内部的金属液温度就越高,液态收缩就越大,则缩孔及缩松的容积越大。缩就越大,则缩孔及缩松的容积越大。2.防止铸件产生缩孔和缩松的途径防止铸件产生缩孔和缩松的途径(1)顺序凝固顺序凝固原则原则(2)同时凝固同时凝固原则原则(3)采取的工艺措施采取的工艺措施防止铸件产生缩孔和缩松的指导思想:防止铸件产生缩孔和缩松的指导思想:针对该合金的收缩和凝固特点,制定针对该合金的收缩和凝固特点,制定正确的铸造工
12、艺,使铸件在凝固过程正确的铸造工艺,使铸件在凝固过程中建立起良好的补缩条件,尽可能使中建立起良好的补缩条件,尽可能使缩松转化成缩孔,并使缩孔出现在铸缩松转化成缩孔,并使缩孔出现在铸件最后凝固的地方,在此处安放冒口,件最后凝固的地方,在此处安放冒口,使缩孔集中在冒口中,或在此处安置使缩孔集中在冒口中,或在此处安置浇口进行直接补缩。浇口进行直接补缩。(1)顺序凝固原则:顺序凝固原则:铸件的顺序凝固铸件的顺序凝固原则是采取各种原则是采取各种工艺措施,保证工艺措施,保证铸件结构上的各铸件结构上的各部分部分按照距离冒按照距离冒口的远近,由远口的远近,由远及近朝着冒口方及近朝着冒口方向凝固,冒口本向凝固,
13、冒口本身最后凝固。铸身最后凝固。铸件按照这一原则件按照这一原则顺序凝固时,可顺序凝固时,可使缩孔集中在冒使缩孔集中在冒口中,获得致密口中,获得致密的铸件。的铸件。顺序凝固原则的优缺点:优点:冒口补缩好,可防止缩孔、缩松。缺点:铸件各部位温差大,易产生应力、变形和热裂;铸件出品率低。适用合金:对凝固收缩大,凝固温度范围小的合金常采用 此原则。如铸钢等。(2)同时凝固原同时凝固原则:则:同时凝同时凝固原则是采固原则是采取各种工艺取各种工艺措施保证措施保证铸铸件结构上的件结构上的各部分各部分之间之间没有温差或没有温差或温差尽量小,温差尽量小,使各部分同使各部分同时凝固。时凝固。同时凝固原则的优缺点:
14、同时凝固原则的优缺点:优点:不易产生应力、变形和热裂;一般不加冒口或冒口很小,节约金属,铸件出品率高。缺点:往往在铸件中心区或热节处产生缩松。适用合金:体收缩小的合金,铸件壁厚均匀,气密性要求不高,变形、热裂倾向为主要矛盾的铸件;球墨铸铁的无冒口工艺。凝固原则与凝固方式的区别:凝固原则:采取各种工艺措施使铸件结构上的各个部分的凝固顺序不同。凝固方式:是铸件凝固某时刻某一断面上的凝固顺序不同。(3)采取的工艺措施)采取的工艺措施 顺序凝固原则:冒口位置:设置于铸件厚壁或热节处 冒口、冷铁、补贴的联合应用(铸钢件)内浇口位置:从冒口处引入 浇注温度:高温慢浇 同时凝固原则:内浇口位置:从铸件薄壁处
15、引入 浇注温度:低温快浇 冷铁的应用:安放在铸件厚壁处 加压补缩8-2 气孔与夹杂气孔与夹杂 一、气孔的分类及特征一、气孔的分类及特征 气孔:气孔:存在于液态金属中的气体,若凝固前气泡来存在于液态金属中的气体,若凝固前气泡来不及排除,就会在金属内形成孔洞。这种不及排除,就会在金属内形成孔洞。这种因气体分子因气体分子聚集而产生的孔洞称为气孔聚集而产生的孔洞称为气孔。气孔分类:气孔分类:金属中的气孔按气体来源不同可分为:金属中的气孔按气体来源不同可分为:析出性气孔析出性气孔、侵入性气孔侵入性气孔和和反应性气孔反应性气孔;按气体种;按气体种类不同可分为氢气孔、氮气孔和一氧化碳气孔等。类不同可分为氢气
16、孔、氮气孔和一氧化碳气孔等。1析出性气孔析出性气孔 液态金属在冷却凝固过程中,液态金属在冷却凝固过程中,因气体溶解度下降,析出的气体来不及逸出而产生的因气体溶解度下降,析出的气体来不及逸出而产生的气孔称为析出性气孔。这类气孔主要是氢气孔和氮气气孔称为析出性气孔。这类气孔主要是氢气孔和氮气孔。孔。析出性气孔的析出性气孔的特征特征:析出性气孔通常分布在铸件的:析出性气孔通常分布在铸件的整个断面或某一局部区域,尤其在冒口附近和热节等整个断面或某一局部区域,尤其在冒口附近和热节等温度较高的区域分布比较密集。气孔形状有团球形、温度较高的区域分布比较密集。气孔形状有团球形、裂纹多角形、断续裂纹状或混合型。
17、当金属含气量较裂纹多角形、断续裂纹状或混合型。当金属含气量较少时,呈裂纹状;而含气量较多时,气孔较大,呈团少时,呈裂纹状;而含气量较多时,气孔较大,呈团球形。析出性气孔常发生在同一炉或同一包浇注的一球形。析出性气孔常发生在同一炉或同一包浇注的一批铸件中。批铸件中。2侵入性气孔侵入性气孔 铸型和型芯等在液态金属高温铸型和型芯等在液态金属高温作用下产生的气体,侵入金属内部所形成的气孔,称作用下产生的气体,侵入金属内部所形成的气孔,称为侵入性气孔。为侵入性气孔。侵入性气孔侵入性气孔特征特征:数量较少、体积较大、孔壁光:数量较少、体积较大、孔壁光滑、表面有氧化色,常出现在铸件表层或近表层。形滑、表面有
18、氧化色,常出现在铸件表层或近表层。形状多呈梨形、椭圆形或圆形,梨尖一般指向气体侵入状多呈梨形、椭圆形或圆形,梨尖一般指向气体侵入的方向。侵入的气体一般是水蒸气、一氧化碳、二氧的方向。侵入的气体一般是水蒸气、一氧化碳、二氧化碳、氢、氮和碳氢化合物等。化碳、氢、氮和碳氢化合物等。3反应性气孔反应性气孔 液态金属内部或与铸型之间发液态金属内部或与铸型之间发生化学反应而产生的气孔,称为反应性气孔。生化学反应而产生的气孔,称为反应性气孔。反应性气孔反应性气孔特征特征:金属金属-铸型间反应性气孔常分铸型间反应性气孔常分布在铸件表面皮下布在铸件表面皮下 13mm 处,通称为处,通称为皮下气孔皮下气孔,其形状
19、有球状和梨状,孔径约其形状有球状和梨状,孔径约 13mm。有些皮下。有些皮下气孔呈细长状,垂直于铸件表面,深度可达气孔呈细长状,垂直于铸件表面,深度可达 10mm 左右。气孔内主要是左右。气孔内主要是 H2、CO 和和 N2等。等。液态金属内部合金元素之间或与非金属夹杂物液态金属内部合金元素之间或与非金属夹杂物发生化学反应产生的蜂窝状气孔,呈梨形或团球形发生化学反应产生的蜂窝状气孔,呈梨形或团球形均匀分布。碳钢焊缝内因冶金反应生成的均匀分布。碳钢焊缝内因冶金反应生成的 CO 气孔,气孔,则沿焊缝结晶方向呈条虫状分布。皮下气孔常出现则沿焊缝结晶方向呈条虫状分布。皮下气孔常出现在熔点较高的合金(铸
20、钢、铸铁及铜合金)铸件中。在熔点较高的合金(铸钢、铸铁及铜合金)铸件中。二、气孔的危害二、气孔的危害 气孔是铸件或焊件最常见的缺陷之一。气孔的存气孔是铸件或焊件最常见的缺陷之一。气孔的存在不仅能减小金属的有效承载面积,而且使局部造在不仅能减小金属的有效承载面积,而且使局部造成应力集中,成为成应力集中,成为零件断裂的裂纹源零件断裂的裂纹源。一些形状不。一些形状不规则的气孔,则会增加缺口的敏感性,使金属的规则的气孔,则会增加缺口的敏感性,使金属的强强度下降度下降和和抗疲劳能力降低抗疲劳能力降低。三、防止气孔产生的措施三、防止气孔产生的措施 1.防止析出性气孔的措施防止析出性气孔的措施 (1)消除气
21、体来源(减少金属液原始含气量)消除气体来源(减少金属液原始含气量)(2)采用合理的工艺(提高铸件冷速,铸型(芯)排气畅)采用合理的工艺(提高铸件冷速,铸型(芯)排气畅通)通)(3)对液态金属进行除气处理(浮游、真空、氧化、冷凝)对液态金属进行除气处理(浮游、真空、氧化、冷凝去气)去气)(4)阻止液态金属内气体的析出(加压铸造)阻止液态金属内气体的析出(加压铸造)2.防止侵入性气孔的措施防止侵入性气孔的措施 (1)控制侵入气体的来源(减少砂型发气量)控制侵入气体的来源(减少砂型发气量)(2)控制砂型的透气性和紧实度)控制砂型的透气性和紧实度 (3)提高砂型和砂芯的排气能力)提高砂型和砂芯的排气能
22、力 3.防止反应性气孔(皮下气孔)的措施防止反应性气孔(皮下气孔)的措施 (1)采取烘干、除湿等措施,防止和减少气体进入)采取烘干、除湿等措施,防止和减少气体进入 液态金属。液态金属。(2)严格控制合金中强氧化性元素的含量。)严格控制合金中强氧化性元素的含量。(3)适当提高液态金属的浇注温度,降低凝固速)适当提高液态金属的浇注温度,降低凝固速 度,尽量保证液态金属平稳进入铸型,减少液度,尽量保证液态金属平稳进入铸型,减少液 态金属的氧化。态金属的氧化。(4)浇注系统合理设计:如重庆大足汽车厂,湿型)浇注系统合理设计:如重庆大足汽车厂,湿型 浇注铸钢件,使用溢流冒口,去除第一股冷钢浇注铸钢件,使
23、用溢流冒口,去除第一股冷钢 水,减少水,减少FeO含量,铸钢件不产生皮下气孔。含量,铸钢件不产生皮下气孔。四、夹杂物的形成及防止措施四、夹杂物的形成及防止措施 1.夹杂物的来源及分类夹杂物的来源及分类 夹杂物:指金属内部或表面存在的和基本金属成分不同的物夹杂物:指金属内部或表面存在的和基本金属成分不同的物质。质。(1)夹杂物的来源)夹杂物的来源 它主要来源于它主要来源于原材料本身的杂质原材料本身的杂质及及金属在熔炼、浇注和凝金属在熔炼、浇注和凝固过程中与非金属元素或化合物发生反应而形成的产物固过程中与非金属元素或化合物发生反应而形成的产物。原材料本身含有的夹杂物,如金属炉料表面的粘砂、原材料本
24、身含有的夹杂物,如金属炉料表面的粘砂、氧化锈蚀、随同炉料一起进入熔炉的泥砂、焦炭中的灰分等,氧化锈蚀、随同炉料一起进入熔炉的泥砂、焦炭中的灰分等,熔化后变为溶渣。熔化后变为溶渣。金属熔炼时,脱氧、脱硫、孕育和变质等处理过程,金属熔炼时,脱氧、脱硫、孕育和变质等处理过程,产生大量的产生大量的 MnO、SiO2、Al2O3等夹杂物。等夹杂物。液态金属与炉衬、浇包的耐火材料及溶渣接触时,会液态金属与炉衬、浇包的耐火材料及溶渣接触时,会发生相互作用,产生大量的发生相互作用,产生大量的 MnO、Al2O3等夹杂物。等夹杂物。在精炼后转包及浇注过程中,金属表面与空气接触形在精炼后转包及浇注过程中,金属表面
25、与空气接触形成的表面氧化膜,被卷入金属后形成氧化夹杂物。成的表面氧化膜,被卷入金属后形成氧化夹杂物。在铸造和焊接过程中,金属与非金属元素发生化学反在铸造和焊接过程中,金属与非金属元素发生化学反应而产生的各种夹杂物,如应而产生的各种夹杂物,如 FeS、MnS 等硫化物。等硫化物。(2)夹杂物的分类)夹杂物的分类 按夹杂物按夹杂物化学成分化学成分,可分为:,可分为:氧化物氧化物-FeO、MnO、SiO2、Al2O3 硫化物硫化物-FeS、MnS、Cu2S 硅酸盐硅酸盐-FeO.SiO2、Fe2SiO4、Mn2SiO4、按夹杂物按夹杂物形成时间形成时间,可分为初生夹杂物、次生夹杂物,可分为初生夹杂物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 液态 成形 主要 缺陷 质量 控制 资料 讲解
限制150内