九年级数学上册相似三角形的判定_练习__课件湘教版.ppt
《九年级数学上册相似三角形的判定_练习__课件湘教版.ppt》由会员分享,可在线阅读,更多相关《九年级数学上册相似三角形的判定_练习__课件湘教版.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、练习课练习课练习课练习课一、复习:1、相似三角形的定义是什么?答:对应角相等,对应边成比例的两个三角形叫做相似三角形.2、判定两个三角形相似有哪些方法?答:A、用定义;B、用预备定理;C、用判定定理1、2、3.D、直角三角形相似的判定定理一一.填空选择题填空选择题:1.(1)ABC中,D、E分别是AB、AC上的点,且AED=B,那么 AED ABC,从而 (2)ABC中,AB的中点为E,AC的中点为D,连结ED,则 AED与 ABC的相似比为_.2.如图,DEBC,AD:DB=2:3,则 AED和 ABC 的相似比为.3.已知三角形甲各边的比为3:4:6,和它相似的三角形乙 的最大边为10cm
2、,则三角形乙的最短边为_cm.4.等腰三角形ABC的腰长为18cm,底边长为6cm,在腰AC上取点D,使ABC BDC,则DC=_.AC2:552cm1:25.如图,ADE ACB,则DE:BC=_。6.如图,D是ABC一边BC 上一点,连接AD,使 ABC DBA的条件是().A.AC:BC=AD:BD B.AC:BC=AB:AD C.AB2=CDBC D.AB2=BDBC7.D、E分别为ABC 的AB、AC上的点,且DEBC,DCB=A,把每两个相似的三角形称为一组,那么图中共有相似三角形_组。1:3D4二、证明题:二、证明题:1.D为ABC中AB边上一点,ACD=ABC.求证:AC2=A
3、DAB.2.ABC中,BAC是直角,过斜 边中点M而垂直于斜边BC的直线 交CA的延长线于E,交AB于D,连AM.求证:MAD MEA AM2=MD ME3.如图,ABCD,AO=OB,DF=FB,DF交AC于E,求证:ED2=EO EC.4.过ABCD的一个顶点A作一直 线分别交对角线BD、边BC、边 DC的延长线于E、F、G.求证:EA2=EF EG.5.ABC为锐角三角形,BD、CE 为高.求证:ADE ABC (用两种方法证明).6.已知在ABC中,BAC=90,ADBC,E是AC的中点,ED交 AB的延长线于F.求证:AB:AC=DF:AF.解:AED=B,A=A AED ABC(两
4、角对 应相等,两三角形相似)1.(1)ABC中,D、E分别是AB、AC上的点,且AED=B,那么 AED ABC,从而 解:D、E分别为AB、AC的中点 DEBC,且 ADEABC 即ADE与ABC的相似比为1:2 (2)ABC中,AB的中点为D,AC的中点为E,连结DE,则 ADE与 ABC的相似比为_2.解:DEBC ADEABC AD:DB=2:3 DB:AD=3:2 (DB+AD):AD=(2+3):3 即 AB:AD=5:2 AD:AB=2:5 即ADE与ABC的相似比为2:5 如图,DEBC,AD:DB=2:3,则 AED和 ABC 的相似比为.3.已知三角形甲各边的比为3:4:6
5、,和它相似的三角形乙 的最大边为10cm,则三角形乙的最短边为_cm.解:设三角形甲为ABC,三角形乙为 DEF,且DEF的最大边为DE,最短边为EF DEFABC DE:EF=6:3即 10:EF=6:3 EF=5cm4.等腰三角形ABC的腰长为18cm,底边长为6cm,在 腰AC上取点D,使ABC BDC,则DC=_.解:ABC BDC 即 DC=2cm5.解:ADEACB 且 如图,ADE ACB,则DE:BC=_。7.D、E分别为ABC 的AB、AC上的点,DEBC,DCB=A,把每两个相似的三角形称为一组,那么图中共有相似三角形_组。解:DEBC ADE=B,EDC=DCB=A DE
6、BC ADE ABC A=DCB,ADE=B ADE CBD ADE ABC ADE CBD ABC CBD DCA=DCE,A=EDC ADC DEC1.D为ABC中AB边上一点,ACD=ABC.求证:AC2=ADAB分析:要证明AC2=ADAB,需要先将乘积式改写为比例式 ,再证明AC、AD、AB所在的两个三角形相似。由已知两个三角形有二个角对应相等,所以两三角形相似,本题可证。证明:ACD=ABC A=A ABC ACD AC2=ADAB2.ABC中,BAC是直角,过斜边中点M而垂直于 斜边BC的直线交CA的延长线于E,交AB于D,连AM.求证:MAD MEA AM2=MD ME分析:已
7、知中与线段有关的条件仅有AM=BC/2=BM=MC,所以首先考虑用两个角对应相等去判定两个三角形相似。AM是 MAD 与 MEA 的公共边,故是对应边MD、ME的比例中项。证明:BAC=90 M为斜边BC中点 AM=BM=BC/2 B=MAD又 B+BDM=90 E+ADE=90 BDM=ADEB=EMAD=E又 DMA=AMEMAD MEA MAD MEA 即AM2=MDME3.如图,ABCD,AO=OB,DF=FB,DF交AC于E,求证:ED2=EO EC.分析:欲证 ED2=EOEC,即证:,只需证DE、EO、EC所在的三角形相似。证明:ABCD C=A AO=OB,DF=FB A=B,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 上册 相似 三角形 判定 练习 _ 课件 湘教版
限制150内