《勾股定理复习复习课件.ppt》由会员分享,可在线阅读,更多相关《勾股定理复习复习课件.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、知识要点如果直角三角形两直角边分别为如果直角三角形两直角边分别为a,b,斜边为,斜边为c,那么那么勾股定理勾股定理a a2 2+b+b2 2=c=c2 2即直角三角形两直角边的平方和等于斜边的平方即直角三角形两直角边的平方和等于斜边的平方.1勾股逆定理勾股逆定理如果三角形的三边长如果三角形的三边长a,b,c满足满足a2+b2=c2,那么这个三角形是直角三角形那么这个三角形是直角三角形2勾勾股数股数满足满足a2+b2=c2的三个的三个正整数正整数,称为勾股数称为勾股数334例例5、如图,四边形如图,四边形ABCD中,中,AB3,BC=4,CD=12,AD=13,B=90,求四边,求四边形形A
2、BCD的面积的面积DBAC3412135变式变式有一块田地的形状和尺寸有一块田地的形状和尺寸如图所示,试求它的面积。如图所示,试求它的面积。ABCD56例6、假期中,王强和同学到某海岛上去玩探宝游戏,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,在折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A 到宝藏埋藏点B的距离是多少千米?AB82361C7 专题一专题一 分类思想分类思想 1.直角三角形中,已知两边长是直角边、直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。斜边不知道时,应分类讨论。2.当已知条件中没有给出图形时,应认真当已知条件
3、中没有给出图形时,应认真读句画图,避免遗漏另一种情况。读句画图,避免遗漏另一种情况。8 2.三角形三角形ABC中中,AB=10,AC=17,BC边上边上的高线的高线AD=8,求求BCDDABC 1.已知已知:直角三角形的三边长分别是直角三角形的三边长分别是 3,4,X,则则X2=25 或或7ABC10178171089 专题二专题二 方程思想方程思想 直角三角形中,当无法已知两边求第三直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。的等量关系,利用勾股定理列方程。10与古人比一比与古人比一比在我国古代数学
4、著作在我国古代数学著作九章算术九章算术中记载了一道有中记载了一道有趣的问题,这个问题的意思是:趣的问题,这个问题的意思是:有一个水池,水面是一个边长有一个水池,水面是一个边长为为10尺的正方形,在水池的中尺的正方形,在水池的中央有一根新生的芦苇,它高出央有一根新生的芦苇,它高出水面水面1尺,如果把这根芦苇垂尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池达岸边的水面,请问这个水池的深度和这根芦苇的长度各是的深度和这根芦苇的长度各是多少?多少?ADBCx1X+1511 专题三专题三 折叠折叠 折叠和轴对称密不可分,利用折叠前后折叠和轴对称密不可分
5、,利用折叠前后图形全等,找到对应边、对应角相等便可图形全等,找到对应边、对应角相等便可顺利解决折叠问题顺利解决折叠问题12例例2:折叠矩形折叠矩形ABCD的一边的一边AD,点点D落在落在BC边上的点边上的点F处处,已知已知AB=8CM,BC=10CM,求求 1.CF 2.EC.ABCDEF810106X8-X48-X13 1.几何体的表面路径最短的问题,一般展几何体的表面路径最短的问题,一般展开表面成平面。开表面成平面。2.利用两点之间线段最短,及勾股定理利用两点之间线段最短,及勾股定理求解。求解。专题四专题四 展开思想展开思想14例例1:1:如如图图,一一圆圆柱柱高高8cm,8cm,底底面面
6、半半径径2cm,2cm,一一只只蚂蚂蚁蚁从从点点A A爬爬到到点点B B处处吃吃食食,要要爬爬行行的的最最短短路路程程(取取3 3)是是()A.20cm B.10cm C.14cm D.A.20cm B.10cm C.14cm D.无法确定无法确定 BB8OA2蛋糕ACB周长的一半15例例2 如图:正方体的棱长为如图:正方体的棱长为cm,一只,一只蚂蚁欲从正方体底面上的顶点蚂蚁欲从正方体底面上的顶点A沿正方沿正方体的表面到顶点体的表面到顶点C处吃食物,那么它需处吃食物,那么它需要爬行的最短路程的长是多少?要爬行的最短路程的长是多少?ABCDABCD1616例例3,3,如如图图是一个三是一个三级
7、级台台阶阶,它的每一,它的每一级级的的长宽长宽和高分和高分别为别为20dm20dm、3dm3dm、2dm,A和和B是这个台阶两个相对的端点,是这个台阶两个相对的端点,A点有一只蚂蚁,想到点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿点去吃可口的食物,则蚂蚁沿着台阶面爬到着台阶面爬到B点最短路程是多少?点最短路程是多少?20203 32 2AB32323AB2=AC2+BC2=625,AB=25.17例例4:.如如图图,长长方方体体的的长长为为15cm,宽宽为为10cm,高高为为20cm,点点B离离点点C5cm,一一只只蚂蚂蚁蚁如如果果要要沿沿着着长长方方体体的的表表面面从从点点A爬爬到到点点B
8、,需需要要爬爬行行的的最最短短距离是多少?距离是多少?1020BAC155181020B5B51020ACEFE1020ACFAECB201510519 1.几何体的内部路径最值的问题,一般画几何体的内部路径最值的问题,一般画出几何体截面出几何体截面 2.利用两点之间线段最短,及勾股定理利用两点之间线段最短,及勾股定理求解。求解。专题五专题五 截面中的勾股定理截面中的勾股定理20练习:练习:一种盛饮料的圆柱形杯,测得内部底面半径为2.5,高为12,吸管放进杯里,杯口外面至少要露出4.6,问吸管要做多长?21勾股定理回顾与思考勾股定理回顾与思考22一辆装满货物的卡车一辆装满货物的卡车2.5m高,
9、高,1.6m宽,要开进宽,要开进具有如图所示形状厂门的某工厂,问这辆卡车能具有如图所示形状厂门的某工厂,问这辆卡车能否通过厂门?说明你的理由。否通过厂门?说明你的理由。212.30.60.8ABOPQ23正方形面积与勾股定理中的正方形面积与勾股定理中的a2 2、b2 2、c2 2的相互转化的相互转化在直线在直线l上依次摆放着七个正方形,已知斜放置上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是的三个正方形的面积分别是1,2,3,正放置的四个正放置的四个的正方形的面积依次是的正方形的面积依次是S1 1、S2 2、S3 3、S4 4,则,则S1 1+S2 2+S3 3+S4 4=。S1 1S2 2S3 3S4 4123424ABCABC三边三边a,b,ca,b,c为边向外作正为边向外作正方形,以三边为直径作半圆,方形,以三边为直径作半圆,若若S S1 1+S+S2 2=S=S3 3成立,则成立,则ABCABC是直角三角形吗?是直角三角形吗?ACabcS1S2S3ABCabcS1S2S3B25SSSCBAABCABC三边三边a,b,ca,b,c,以三边为边长分,以三边为边长分别作等边三角形,若别作等边三角形,若S S1 1+S+S2 2=S=S3 3成立,成立,则则ABCABC是直角三角形吗?是直角三角形吗?ACabcS1S2S3B26
限制150内