《2412垂直于弦的直径》.ppt
《《2412垂直于弦的直径》.ppt》由会员分享,可在线阅读,更多相关《《2412垂直于弦的直径》.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级上册人教版九年级上册 问题问题:你知道赵州桥吗你知道赵州桥吗?它的主桥是圆弧形它的主桥是圆弧形,它的跨度它的跨度(弧所对的弦的长弧所对的弦的长)为为37.4m,37.4m,拱高拱高(弧弧的中点到弦的距离的中点到弦的距离)为为7.2m7.2m,你能求出赵州桥主你能求出赵州桥主桥拱的半径吗?桥拱的半径吗?赵州桥主桥拱的半径是多少?赵州桥主桥拱的半径是多少?由此你能得到圆的什么特性?由此你能得到圆的什么特性?可以发现:可以发现:圆是轴对称图形。任何圆是轴对称图形。任何一条直径所在直线都是它的对称轴一条直径所在直线都是它的对称轴 不借助任何工具,你能找到圆形不借助任何工具,你能找到圆形纸片
2、的圆心吗纸片的圆心吗?如图如图,AB,AB是是O O的一条弦的一条弦,直径直径CDAB,CDAB,垂足为垂足为E.E.你能发现图中有那些相等的线段你能发现图中有那些相等的线段和弧和弧?为什么为什么?OABCDE线段线段:AE=BE:AE=BE弧弧:AC=BC,AD=BD:AC=BC,AD=BD垂径定理垂径定理垂直于弦垂直于弦的的直径直径平分弦平分弦,并且平分弦所对的两条弧并且平分弦所对的两条弧CDABCDAB CD CD是直径,是直径,AE=BE,AE=BE,AC=BC,AC=BC,AD=BD.AD=BD.OABCDE下列图形是否具备垂径定理的条件?下列图形是否具备垂径定理的条件?是是不是不是
3、是是不是不是OEDCAB垂径定理的几个基本图形:垂径定理的几个基本图形:CDCD过圆心过圆心CDABCDAB于于E EAE=BEAC=BCAD=BD1.已知已知P为为 O内一点,且内一点,且OP2cm,如果,如果 O的半径的半径是是3cm,那么过那么过P点的点的最短的弦最短的弦等于(等于()若若AB=8,半径为半径为5,则,则OP的取值范围是的取值范围是 .PO2.过过 O内一点内一点M的最长弦长为的最长弦长为4厘米,最短弦长为厘米,最短弦长为2厘米,则厘米,则OM的长是多少?的长是多少?OM1 1、如图,、如图,ABAB是是O O的直径,的直径,CDCD为弦,为弦,CDABCDAB于于E E
4、,则下列结论中,则下列结论中不成立不成立的是(的是()A、COE=DOEOE=DOEB、CE=DECE=DEC、OE=AEOE=AED、BD=BCBD=BC OABECD2 2、如图,、如图,OEABOEAB于于E E,若,若O O的半径为的半径为10cm,OE=6cm,10cm,OE=6cm,则则AB=AB=cm,cm,延长延长OEOE交交O O 于点于点G G和和F F,求,求EFEF和和EGEG。OABE3 3、如图,在、如图,在O中,弦中,弦ABAB的长为的长为8cm8cm,圆,圆心心O到到AB的距离为的距离为3cm3cm,求,求O的半径,的半径,延延长长OEOE交交O O 于点于点G
5、 G和和F F,求,求EFEF和和EGEG。OABE4 4、如图,、如图,CDCD是是O的直径,弦的直径,弦ABCDABCD于于E E,CE=1CE=1,AB=10AB=10,求直径,求直径CDCD和和EDED的长。的长。OABECD反思:反思:在在 O中,若中,若 O的半径的半径r、圆心到弦的距离、圆心到弦的距离d、弦长、弦长a、弓形高弓形高h中,任意知道两个量,可根据中,任意知道两个量,可根据定理求出其它定理求出其它两个量:两个量:CDBAO小 结 运用垂径定理可以解决许多生产、生活实际问运用垂径定理可以解决许多生产、生活实际问题,其中弓形是最常见的图形(如图),则弦题,其中弓形是最常见的
6、图形(如图),则弦a a,弦,弦心距心距d d,弓形高,弓形高h h,半径,半径r r之间有以下关系:之间有以下关系:ABC DO d+h=r 垂径定理的应用垂径定理的应用hrd 你能利用垂径定理解决求你能利用垂径定理解决求赵州桥拱半径的问题吗赵州桥拱半径的问题吗?垂径定理的应用垂径定理的应用37.4m7.2mABOCD关于弦的问题,关于弦的问题,常常需要常常需要过圆心作过圆心作弦的垂线段弦的垂线段,这是,这是一条非常重要的一条非常重要的辅辅助线助线。圆心到弦的距离、圆心到弦的距离、半径、弦半径、弦构成构成直角直角三角形三角形,便将问题,便将问题转化为直角三角形转化为直角三角形的问题。的问题。
7、ABOCD解:解:如图,用如图,用ABAB表示主桥拱,设表示主桥拱,设ABAB所在的圆的圆心为所在的圆的圆心为O O,半径为,半径为r.r.经过圆心经过圆心O O作弦作弦ABAB的垂线的垂线OCOC垂足为垂足为D D,与,与ABAB交于点交于点C C,则,则D D是是ABAB的中点,的中点,C C是是ABAB的中点,的中点,CDCD就是拱高就是拱高.AB=37.4m AB=37.4m,CD=7.2mCD=7.2m AD=1/2 AB=18.7m AD=1/2 AB=18.7m,OD=OC-CD=r-7.2OD=OC-CD=r-7.2 解得解得r=27.9r=27.9(m m)即即主桥拱半径约为
8、主桥拱半径约为27.9m.27.9m.垂径定理的应用垂径定理的应用练习练习2 2、如图,一条公路的转变处是一段圆弧、如图,一条公路的转变处是一段圆弧(即图中弧即图中弧CD,CD,点点O O是弧是弧CDCD的圆心的圆心),),其中其中CD=600m,ECD=600m,E为弧为弧CDCD上的一点上的一点,且且OECDOECD垂足为垂足为F,EF=90m.F,EF=90m.求这段弯路的半径求这段弯路的半径.OCDEF船能过拱桥吗船能过拱桥吗?3 3、如图如图,某地有一圆弧形拱桥某地有一圆弧形拱桥,桥下水面宽为桥下水面宽为7.27.2米米,拱顶高出水面拱顶高出水面2.42.4米米.现有一艘宽现有一艘宽
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2412垂直于弦的直径 2412 垂直 直径
限制150内