《三角形全等的条件(SSS).ppt》由会员分享,可在线阅读,更多相关《三角形全等的条件(SSS).ppt(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、12.2 12.2 三角形全等的条件三角形全等的条件(一一)AB=DE BC=EF CA=FD A=D B=E C=FABCDEF 1、什么叫全等三角形?什么叫全等三角形?能够重合能够重合的两个三角形叫的两个三角形叫 全等三角形全等三角形。2、全等三角形有什么性质?全等三角形有什么性质?情境问题:小明家的衣橱上镶有两块小明家的衣橱上镶有两块全等的三角形玻璃装饰物全等的三角形玻璃装饰物,其其中一块被打碎了中一块被打碎了,妈妈让小明妈妈让小明到玻璃店配一块回来到玻璃店配一块回来,请你说请你说说小明该怎么办说小明该怎么办?1.只给一个条件(一组对应边相等或一组对应角相等)。只给一个条件(一组对应边相
2、等或一组对应角相等)。只给一条边:只给一条边:只给一个角:只给一个角:606060探究:探究:2.给出两个条件:给出两个条件:一边一内角:一边一内角:两内角:两内角:两边:两边:303030303050502cm2cm4cm4cm可以发现按这可以发现按这些条件画的三些条件画的三角形都不能保角形都不能保证一定全等。证一定全等。三边对应相等的两个三角形全等(可以三边对应相等的两个三角形全等(可以简写为简写为“边边边边边边”或或“SSS”)。)。已知三角形三条边分别是已知三角形三条边分别是 4cm4cm,5cm5cm,7cm7cm,画画出这个三角形,把所画的三角形出这个三角形,把所画的三角形分别分别
3、剪剪下来,并与同伴下来,并与同伴比一比比一比,发现什么,发现什么?思考:思考:你能用你能用“边边边边边边”解释三角形具解释三角形具有稳定性吗?有稳定性吗?判断两个三角形全等的推理过程,叫做证明三角形判断两个三角形全等的推理过程,叫做证明三角形全等。全等。AB=DE BC=EF CA=FDABCDEF用用 数学语言表述:数学语言表述:在在ABC和和 DEF中中 ABC DEF(SSS)例例1.如下图,如下图,ABC是一个刚架,是一个刚架,AB=AC,AD是连接是连接A与与BC中点中点D的支架。的支架。求证:求证:ABD ACD分析:分析:要证明要证明 ABD ACD,首先看这两个三角形的三条边是
4、首先看这两个三角形的三条边是否对应相等。否对应相等。结论结论:从这题的证明中可以看出,证明是由:从这题的证明中可以看出,证明是由题设(已知)出发,经过一步步的推理,最题设(已知)出发,经过一步步的推理,最后推出结论正确的过程。后推出结论正确的过程。准备条件:证全等时要用的间接准备条件:证全等时要用的间接条件要先证好;条件要先证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:已知已知AC=FE,BC=DE,点,点A,D,B,F在在一条直线上,一条直线
5、上,AD=FB(如图),要用(如图),要用“边边边边边边”证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?以外,还应该有什么条件?怎样才能得到这个条件?怎样才能得到这个条件?解:要证明解:要证明ABC FDE,还应该有还应该有AB=DF这个条件这个条件 DB是是AB与与DF的公共部分,的公共部分,且且AD=BF AD+DB=BF+DB 即即 AB=DF 如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。证明:证明:BD=CE BD-ED=CE-ED,即即BE=CD。在在AEB和和ADC中,中,AB=ACAE=ADBE=CD AEB ADCCABDE小结小结2.三边对应相等的两个三角形全等(边边边三边对应相等的两个三角形全等(边边边或或SSS););3.书写格式:书写格式:准备条件;准备条件;三角形三角形全等书写的三步骤。全等书写的三步骤。1.知道三角形三条边的长度怎样画三角形。知道三角形三条边的长度怎样画三角形。
限制150内