第四章 随机变量的数学期望.ppt
《第四章 随机变量的数学期望.ppt》由会员分享,可在线阅读,更多相关《第四章 随机变量的数学期望.ppt(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章 随机变量的数字特征数学期望方差协方差和相关系数矩与协方差矩阵4.1 4.1 数学期望数学期望 4.1.1 概念概念例例1 1、盒子中有、盒子中有6 6个球(如图),个球(如图),122333从中任取一球再放回,重复了三次,问三次从中任取一球再放回,重复了三次,问三次抽到号码的平均值。抽到号码的平均值。定义定义4.1:设离散型随机变量设离散型随机变量X 的分布列是的分布列是 ,若级数若级数 收收敛敛,则则称称随随机机变变量量 X 的的数数学学期期望望存存在在,且且称级数称级数 的和为的和为 X 的数学期望,并记为的数学期望,并记为EX,有时也称,有时也称 EX 为为 X 的均值。的均值。
2、对连续型随机变量对连续型随机变量 X 的数学期望类似的可定的数学期望类似的可定义如下:义如下:定义定义4.2:如果连续型随机变量如果连续型随机变量X具有密度函数具有密度函数 f(x),积分,积分 收敛,则称收敛,则称 X 的数学的数学期望存在,否则称期望存在,否则称X的数学期望不存在。若的数学期望不存在。若X 的数学期望存在,称积分值的数学期望存在,称积分值 为为 X 的数学期望,也记为的数学期望,也记为 EX。注注1、若、若 ,仍称,仍称X的的 数学期望不存在。数学期望不存在。2、离散型取有限个值,连续型密度函数只在、离散型取有限个值,连续型密度函数只在有限区间上积分,则有限区间上积分,则X
3、的期望一定存在。的期望一定存在。3、离散型只取非负值,连续型只在、离散型只取非负值,连续型只在x0时时f(x)0,则只需直接计算期望。,则只需直接计算期望。4.1.2 4.1.2 常见随机变量的数学期望常见随机变量的数学期望 (1)()(01)分布)分布p1-pP10X(2)二项分布)二项分布B(n,p)(3)泊松分布)泊松分布P()(4)几何分布)几何分布G(p)(5)超几何分布)超几何分布H(N,M,n)(6)均匀分布)均匀分布U(a,b)(7)指数分布)指数分布(8)正态分布)正态分布 N(,2 2)4.1.3 4.1.3 随机变量函数的数学期望随机变量函数的数学期望 定理定理4.14.
4、1:设设Y是随机变量是随机变量X的函数,即的函数,即 (g 是连续函数),是连续函数),(1 1)若)若X是离散型随机变量,其分布律为是离散型随机变量,其分布律为而级数而级数 绝对收敛,则有绝对收敛,则有(2 2)若)若 X 是连续型随机变量,其密是连续型随机变量,其密度函数为度函数为 ,若积分,若积分 绝对收敛,则有绝对收敛,则有 定理定理4.24.2:设设Z Z是二维随机变量是二维随机变量(X,Y)的的函数,即函数,即Zg(X,Y),),则则(1 1)若)若(X,Y)是二维离散型随机变量,有是二维离散型随机变量,有(2 2)若)若(X,Y)是二维连续型随机变量,有是二维连续型随机变量,有例
5、例1 1:设:设 XB(n,p),),求求EX(X1)。解:因解:因XB(n,p),),则则X的分布律为的分布律为令令 Yg(X)X(X1)例例2 2、已知、已知XN(0,1),求,求E(X4)例例3 3、(X,Y)的联合密度函数为:的联合密度函数为:求:求:EY例例4 4:设随机变量:设随机变量(X,Y)服从二维正态分服从二维正态分 布,其密度为布,其密度为求求 的数学期望的数学期望。解:解:例例5 5:设:设X、Y相互独立同服从标准正态分布相互独立同服从标准正态分布N(0,1),),求求 E(maxX,Y)。解:由题设,解:由题设,(X,Y)的联合密度为的联合密度为(1 1)ECC,(C为
6、常数为常数)(2 2)E(CX)CEX,(C为常数为常数)(3 3)E(X+Y)EXEY E(aX+b)aEXb,E()(4 4)若若X、Y是相互独立的随机变量,则是相互独立的随机变量,则 E(XY)EXEY。4.1.4 4.1.4 数学期望的性质数学期望的性质例例6 6、盒中有、盒中有N个球,其中个球,其中M个黑球,个黑球,N-M个个白球,从中任取白球,从中任取n个球,令个球,令X表示取得黑球的表示取得黑球的个数,个数,求求 EX。4.2 随机变量的方差随机变量的方差 4.2.1 4.2.1 方差的定义方差的定义 对随机变量的特征进行考察,除了数学对随机变量的特征进行考察,除了数学期望外,还
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四章 随机变量的数学期望 第四 随机变量 数学 期望
限制150内