282解直角三角形(第3课时).ppt
《282解直角三角形(第3课时).ppt》由会员分享,可在线阅读,更多相关《282解直角三角形(第3课时).ppt(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、利用利用解直角三角形解直角三角形的知识的知识解决实际问题解决实际问题的的一般过程是一般过程是:1.将实际问题抽象为数学问题将实际问题抽象为数学问题;(画出平面图形画出平面图形,转化为解直角三角形的问题转化为解直角三角形的问题)2.根据条件的特点根据条件的特点,适当选用锐角三角函数等去解直角三角形适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案得到数学问题的答案;4.得到实际问题的答案得到实际问题的答案.例例3.如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东65方向,距离方向,距离灯塔灯塔80海里的海里的A处,它沿正南方向航行一段时间后,到处,它沿正南方向航行一段时间
2、后,到达位于灯塔达位于灯塔P的南偏东的南偏东34方向上的方向上的B处,这时,海轮所处,这时,海轮所在的在的B处距离灯塔处距离灯塔P有多远?有多远?(精确到(精确到0.01海里)海里)6534PBCA指南或指北的方向线与目标方向线构成小于指南或指北的方向线与目标方向线构成小于900的角的角,叫做方位角叫做方位角.如图:点如图:点A在在O的北偏东的北偏东30点点B在点在点O的南偏西的南偏西45(西南方向)(西南方向)3045BOA东东西西北北南南方位角方位角例例3 如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东65方向,距离灯塔方向,距离灯塔80海里海里的的A处,它沿正南方向航行一
3、段时间后,到达位于灯塔处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东的南偏东34方向上的方向上的B处,这时,海轮所在的处,这时,海轮所在的B处距离灯塔处距离灯塔P有多远(精确到有多远(精确到0.01海里)?海里)?解:如图解:如图,在,在RtAPC中,中,PCPAcos(9065)80cos25800.91=72.8在在RtBPC中,中,B34当海轮到达位于灯塔当海轮到达位于灯塔P的南偏东的南偏东34方向时,它距离灯塔方向时,它距离灯塔P大约大约130.23海里海里6534PBCA 解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相解直角三角形有广泛的应用,解决问题时,要根
4、据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角时,只要测出仰角a和大坝的坡面长度和大坝的坡面长度l,就能算出,就能算出h=lsina,但是,当我们要测量如图所示的,但是,当我们要测量如图所示的山高山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山和山坡长度坡长度l化整为零,积零为整,化曲为直,以直代曲的解决问题的策略化整为零,积零为整,化曲为直,以直代曲的解决问题的策略与测坝高相比,测山高的困难在于;坝坡是与测坝高相比,测山高的困难在于;坝坡是“直直
5、”的,而山坡是的,而山坡是“曲曲”的,怎样解决这样的问题呢?的,怎样解决这样的问题呢?hhll 我们设法我们设法“化曲为直,以直代曲化曲为直,以直代曲”我们可以把山坡我们可以把山坡“化整化整为零为零”地划分为一些小段,图表示其中一部分小段,划分小段地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是时,注意使每一小段上的山坡近似是“直直”的,可以量出这段的,可以量出这段坡长坡长l1,测出相应的仰角,测出相应的仰角a1,这样就可以算出这段山坡的高度,这样就可以算出这段山坡的高度h1=l1sina1.在每小段上,我们都构造出直角三角形,利用上面的方法分别算在每小段上,我
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 282 直角三角形 课时
限制150内