数列期末专题复习(共9页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数列期末专题复习(共9页).doc》由会员分享,可在线阅读,更多相关《数列期末专题复习(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上必修5第二章数列复习专题 一、知识纲要(1)数列的概念,通项公式,数列的分类,从函数的观点看数列(2)等差、等比数列的定义(3)等差、等比数列的通项公式(4)等差中项、等比中项(5)等差、等比数列的前n项和公式及其推导方法二、方法总结1数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想2等差、等比数列中,、 “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法3求等比数列的前项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想4数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转
2、化等三、知识内容:1.数列数列的通项公式: 数列的前n项和:2.等差数列等差数列的定义:等差数列的判定方法:(1)定义法:对于数列,若(常数),则数列是等差数列。 (2)等差中项:对于数列,若,则数列是等差数列。等差数列的通项公式:说明:该公式整理后是关于的一次函数。等差数列的前项和: 说明:对于公式整理后是关于的没有常数项的二次函数。等差中项:等差数列的性质: 3.等比数列等比数列的概念:等比中项:等比数列的判定方法:(1)定义法:对于数列,若,则数列是等比数列。(2)等比中项:对于数列,若,则数列是等比数列。等比数列的通项公式:如果等比数列的首项是,公比是,则等比数列的通项为。等比数列的前
3、n项和: 当时,等比数列的性质:四、数列求和的常用方法(一)倒序相加法:将一个数列倒过来排序(倒序),当它与原数列相加时,若有因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。如等差数列的求和公式的推导。 (二)错位相减法:这是推导等比数列的前项和公式时所用的方法,这种方法主要用于求数列的前项和,其中、分别是等差数列和等比数列。例1求数列的前项和。(三)分组求和法 所谓分组求和法,即将一个数列中的项拆成几项,转化成特殊数列求和。例2已知数列满足,求其前项和。(四)公式法(恒等式法):利用已知的求和公式来求和,如等差数列与等比数列求和公式,再如 、等公式。例3求数列,的和。(五
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 期末 专题 复习
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内