2023年乐高机器人巡线原理.docx
《2023年乐高机器人巡线原理.docx》由会员分享,可在线阅读,更多相关《2023年乐高机器人巡线原理.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年乐高机器人巡线原理 一、前言 在机器人竞赛中,“巡线”特指让机器人沿着场地中一条固定线路(通常是黑线)行进的任务。作为一项搭建和编程的基本功,巡线既可以是独立的常规赛比赛项目,也能成为其他比赛项目的重要技术支撑,在机器人比赛中具有重要地位。 二、光感中心与小车转向中心 以常见的双光感巡线为例,光感的感应中心是两个光感连线的中点,也就是黑线的中间位置。而小车的转向,是以其车轮连线的中心为圆心进行的。很明显,除非将光感放置于小车转向中心,否则机器人在巡线转弯的过程中,探测线路与做出反应之间将存在一定差距。而若将光感的探测中心与转向中心重合,将大幅提升搭建难度并降低车辆灵活性。因此,两个中
2、心的不统一是实际存在的,车辆的转向带动光感的转动,同时又相互影响,造成机器人在巡线时对黑线的反应过快或者过慢,很多巡线失误由此产生。 所以在实际操作中,一般通过程序与结构的配合,在程序中加入一定的微调动作来弥补其中的误差。而精准的微调,需要根据比赛场地的实际情况进行反复调试。 三、车辆结构 巡线任务的核心是让机器人小车按照场地中画出的路线行进,因此,根据任务需要选择合适搭建方式是完成巡线任务的第一步。 1、前轮驱动 前轮驱动的小车一般由两个动力轮和一个万向轮构成,动力轮位于车头,通过左右轮胎反转或其中一个轮胎停转来实现转向,前者的转向中心位于两轮胎连线中点,后者转向中心位于停止不动的轮胎上。由
3、于转向中心距离光感探测中心较近,可以实现快速转向,但由于机器人反应时间的限制,转向精度有限。 2、后轮驱动 后轮驱动的小车结构和转向中心与前轮驱动小车类似,由于转向中心靠后,相对于前轮驱动的小车而言,位于车尾的动力轮需要转动较大的幅度,才能使车头的光感转动同样角度。因此,后轮驱动的小车虽转向速度较慢,但精度高于前轮驱动小车。对于速度要求不高的比赛而言,一般采用后轮驱动的搭建方式。 3、菱形轮胎分布 菱形轮胎分布是指小车的两个动力轮位于小车中部,前后各有一个万向轮作为支撑。这样的结构在一定程度上可以视为前轮驱动和后轮驱动的结合产物,转向速度和精度都介于两者之间。这种结构的优势在于转向中心位于车身
4、中部,转弯半径很小,甚至能以自身几何中心为圆心进行原地转向,适合适用于转90弯或数格子行进等一些比较特殊的巡线线路。 这种结构最初应用于RCX机器人足球上,居中的动力源可以让参赛选手为机器人安装更多的固定和防护装置,以适应比赛中激烈的撞击,具有很好的稳定性。而对于NXT机器人而言,由于伺服电机的形状狭长不规律,将动力轮位于车身中部的做法将大幅提升搭建难度,并使车身重心偏高,降低转弯灵活性。 4、四轮驱动 四轮驱动的小车四个轮胎都有动力,能较好地满足一些比赛中爬坡任务的需要。小车的转向中心靠近小车的几何中心,因此能进行原地转弯运动,具有较好的灵活性,特别适用于转90弯或数格子行进等任务一些比较特
5、殊的巡线线路。虽然与后轮驱动小车相比,转向中心比较靠前,转向精度较小,但四轮驱动小车没有万向轮,转弯需要靠四个轮胎同时与地面摩擦,加大转弯的阻力,因而转弯精度应介于菱形轮胎分布的小车和后轮驱动小车之间。 四轮驱动的小车最大优势在于具有普遍适应性,熟练掌握此结构的参赛选手能在参加FLL工程挑战赛、WRO世界机器人奥林匹克等一些比较复杂的比赛中占据一定优势。 四、编程方案 1、单光感巡线 单光感巡线是巡线任务中最基础的方式,在行进过程中,光感在黑线与白色背景间来回晃动,因此,这种巡线只能用两侧电机交替运动的方式前进,行进路线呈“之”字形。这种巡线方式结构简单易于掌握,但由于只有一个光感,对无法在完
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年乐高 机器人 原理
限制150内