13二次函数复习1.ppt
《13二次函数复习1.ppt》由会员分享,可在线阅读,更多相关《13二次函数复习1.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数复习课二次函数知识点导航:二次函数知识点导航:1、二次函数的定义2、二次函数的图像及性质3、求解析式的三种方法4、a,b,c及相关符号的确定5、抛物线的平移6、二次函数与一元二次方程的关系7、二次函数的应用题8、二次函数的综合运用本章共分两课时:第一课时复习知识点本章共分两课时:第一课时复习知识点15 第二课时复习知识点第二课时复习知识点8 1 1、二次函数的定义、二次函数的定义定义:y=ax bx c(a、b、c 是常数,a 0)定义要点:a 0 最高次数为2 代数式一定是整式练习:1、y=-x,y=2x-2/x,y=100-5 x,y=3 x-2x+5,其中是二次函数的有_个。2.
2、当当m_时时,函数函数y=(m+1)-2+1 是二次函数?是二次函数?2 2、二次函数的图像及性质、二次函数的图像及性质抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=axy=ax2 2+bx+c+bx+c(a0)y=axy=ax2 2+bx+c+bx+c(a0,开口向上开口向上a0)y=a(x-h)2+k(a0)例例2:(1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两点,求两点,求C,A,B的坐标。的坐标。(3)x为何值时,为何值时,y随
3、的增大而减少,随的增大而减少,x为为何值时,何值时,y有最大(小)值,这个最大(小)有最大(小)值,这个最大(小)值是多少?值是多少?(4)x为何值时,为何值时,y0?已知二次函数已知二次函数0(-1,-2)(0,-)(-3,0)(1,0)3 2yx由图象可知:由图象可知:当当x1时,时,y 0当当-3 x 1时,时,y 0开口向下开口向下a0交点在交点在x轴下方轴下方c0与与x轴有一个交点轴有一个交点b2-4ac=0与与x轴无交点轴无交点b2-4ac0,则则a+b+c0当当x=1时,时,y0,则,则a+b+c0,则则a-b+c0当当x=-1,y0,则则a-b+c0当当x=-1,y=0,则则a
4、-b+c=0 xy、二次函数、二次函数y=axy=ax2 2+bx+c(a+bx+c(a0)0)的图象如图的图象如图 所示,则所示,则a a、b b、c c的符号为()的符号为()A A、a0,c0 Ba0,c0 B、a0,c0a0,c0 C C、a0,b0 Da0,b0 D、a0,b0,c0a0,b0,c0,b0,c=0 Ba0,b0,c=0 B、a0,c=0a0,c=0 C C、a0,b0,c0 Da0,b0,c0,b0,b0,b=0,c0,a0,b=0,c0,0 B0 B、a0,c0,a0,c0,b=0,c0,b=0,c0 D0 D、a0,b=0,c0,a0,b=0,c0,0 0 BAC
5、ooo练习:练习:熟练掌握熟练掌握a,b,c,与抛物线图象的关系与抛物线图象的关系(上正、下负)上正、下负)(左同、右异左同、右异)c c4.4.抛物线抛物线y=axy=ax2 2+bx+c(a+bx+c(a0)0)的图象经过原点和的图象经过原点和 二、三、四象限,判断二、三、四象限,判断a a、b b、c c的符号情况:的符号情况:a a 0,b0,b 0,c0,c 0.0.xyo=6.二次函数二次函数y=ax2+bx+c中,如果中,如果a0,b0,c3.已知二次函数的图像如图所示,下列结论:已知二次函数的图像如图所示,下列结论:a+b+c=0 a-b+c0 abc 0 b=2a其中正确的结
6、论的个数是(其中正确的结论的个数是()A 1个个 B 2个个 C 3个个 D 4个个Dx-110y要点:寻求思路时,要着重观察抛物线的开口方要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与向,对称轴,顶点的位置,抛物线与x轴、轴、y轴的轴的交点的位置,注意运用数形结合的思想。交点的位置,注意运用数形结合的思想。5 5、抛物线的平移、抛物线的平移左加右减,上加下减左加右减,上加下减练习练习二次函数二次函数y=2x2的图象向的图象向 平移平移 个单位可得个单位可得到到y=2x2-3的图象;的图象;二次函数二次函数y=2x2的图象向的图象向 平移平移 个单位可得到个单位可得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13 二次 函数 复习
限制150内