2023年《数与形》教学设计(成).docx
《2023年《数与形》教学设计(成).docx》由会员分享,可在线阅读,更多相关《2023年《数与形》教学设计(成).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年数与形教学设计(成) 数与形教学设计 阿城区玉泉中心小学 郑海英 教学目标: 1体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。 2体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。 3在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。 教学重点、难点:积累数形结合数学活动经验,体验数学思想方法的价值,激发兴趣。 教学准备:课件,不同颜色的小正方形。 学具准备:不同颜色的小正方形,双面胶,课堂练习本。 教学过程: 一、谈话导入,出示课题 1、师:最近老师发现,我有一项非常神奇的本领。什么本领
2、呢?我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5像这样的算式,我都算得特别快。快到什么程度呢,只要你能说出这样的算式,我差不多就能脱口而出。你们信吗? 2、师:不信也没关系,我们现场来比一比。找同学来出题,老师来和你们比赛,看看我是不是和传奇的那么快,好不好。我先找三名同学来出题。为了公平起见,为了我没有蒙你们,夜为了证明答案是否正确,我找两名同学用计算机计算,来验证结果。好不好? 3、活动开始:学生出题(一共出3题)老师边听出题边板书,然后快速说出答案。给你们一次机会,不知道,那我说100 4、师:怎么样?是不是特快?想知道我是怎么算出来的吗?你们想不想掌握这个方法,直接告诉你
3、答案就不好玩了,还是你们自己研究好不好?但是现在我可以给你一点点的提示,我是借助图形来发现这个方法的的。(板书:“形”) 5、师:那今天这节课咱们就来研究“数与形”。(完成板书:数 与) 二、动手实践,以形解数 1师:我先根据算式中的加数拿出若干个图形。比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。(边讲解边在黑板上拼摆) 师:接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看? 师:复杂的问题先从简单的开始,先来两个加数的,再来三个加数的。请同学们在小组
4、内先完成第一步,再完成第二步,看看哪个小组最先发现老师的方法。 2小组动手操作,教师巡视。 提问:那个小组发现了老师的方法。 3学生汇报,全班交流分析。 先讨论1+3,再讨论1+3+5。 (师补充解释: 第一组汇报:1在哪?3在哪?这下小正方形的个数和就是1+3的和。每行有几个,一共有几行 ,所以1+3他们的方法可以怎样算? 这一组的表现怎样?我把他们的方法先写在黑板上。 第二组汇报:三行三列,也可以算成3的平方。) 师:那么我把这组同学汇报的方法还原在黑板上(一边拼摆一边讲解) 4、师:根据同学们的汇报,大家认为1+3=22,1+3+5=32。除了这两组同学的汇报,你们还有其他发现吗? 生:
5、算式中加数的个数是几,和就等于几的平方。 师:你们认同他的方法吗?能不能举个具体的例子来说一说? 生1:1+3+5+7+9=52。 生2:1+3+5+7+9+11=62。 生3:1+3+5+7+9+11+13=72 师:那么这些同学的猜想他们认为加数有几个,和也就是几的平方,所有的算式都有这样的规律吗?都可以这样计算吗?有人摇头有人点头,认为可以的说说你的理由,认为不可以的也说说你的理由,可以吗? 小组活动:那么请在小组里说说说理由。 汇报: 1、应该是连续的基数 2|、所有的基数,必须是从1 开始的 3、面积单位更好一些。 师:你们看借助图形来说理由我们就明白了,那我们从头来看一看。请看屏幕
6、:1+3+5+7+9=(52)。 师:一个小正方形可以看成1的平方(板书:1的平方,并贴1个小正方形),课件演示:1+3的拼法。想要拼成一个更大的正方形,再增加1个是不够的,增加的个数要比前一个加数再多2(也就是3);想拼成更大的正方形,再增加3个是不够的,还要比3个再多2个(也就是5个),此时是1+3+5;再往下去,要加7才能拼成更大的正方形,依此类推,加到了9,就能排成每行、每列的个数是5的大正方形。 师:那看来只要是1开始的,连续的奇数相加,就能排成每行、每列个数是几的大正方形,和也就是几的平方。 5、练习。 (1)1+3+5+7+9=( )2; 1+3+5+7+9+11+13=( )2
7、; _=92。 师请学生独立完成,然后全班核对答案。 (2)(出示练习纸)利用规律,算一算()。 1+3+5+7+5+3+1=( ); 1+3+5+7+9+11+13+11+9+7+5+3+1=( )。 全班交流,请学生说明计算结果和原因。 6、师小结:我们同学都很细心,现在不但能很快算出从1开始的连续奇数的和,稍加一点变化,你们也照样算得很快。现在知道老师是用什么方法来快速计算这些题的吧?(看板书说出黑板上3道计算题) 师:老师这个方法算的快吗?巧妙吗?这么巧妙的方法,我们是借助什么发现的?(图形)。看来,有的计算问题借助图形解决会更容易。(板书:思考)就像这个题一样,我们借助图形发现了更巧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数与形 2023 教学 设计
限制150内