2023年中考数学试卷分析及教学策略(精选多篇).docx
《2023年中考数学试卷分析及教学策略(精选多篇).docx》由会员分享,可在线阅读,更多相关《2023年中考数学试卷分析及教学策略(精选多篇).docx(102页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学试卷分析及教学策略(精选多篇) 推荐第1篇:中考数学试卷分析 2023年中考数学试卷分析 北陶中学:崔敬芳 一、试卷总体分析 2023年聊城市中考数学试卷,延续了去年的平稳趋势,较2023年聊城市中考数学试卷相比,题型结构稳定,总体难度略难,灵活性提高。本套试卷在保持对基本知识的考察力度上,重视数学思想方法和学科综合能力的考察。在题型的设计上,注重与现实生活的联系,同时也体现了“实践与操作、综合与探究、创新与应用”的命题特点。(如第2题,第12题,第18题,第21题,第22题,第24题,第25题)。试题基本上无“偏、难、繁、旧”的题目。 在简单题和中档题方面,题型变化不大,都
2、是学生比较熟悉的题型,体现了中考试卷重视“双基”特点。在难度比较大的压轴题方面,如第22题,第24题,第25题,强化了对数学思想方法和数学综合能力的考察,试题比较人性化,无繁琐的计算,但具有很高的灵活性,体现了“入口宽、出口窄”的特点,具有很好的区分度。总体来说,2023年的中考试卷体现了“稳重有变,变中有新”的特点。 本次试卷的试题结构、题型题量分布、以及考点内容分布等基本符合今年的考试说明,这里不详述。今年中考试卷的部分考察内容及难度和去年中考略有变化,在第二部分的典型试题点评部分会有介绍。 二、典型试题点评 在选填压轴题等稍难的题目方面,第8题(选择题的最后一道),考察的是动点与函数图象
3、的题目,第12题(填空题的最后一道),考察的是新概念和新定义的题目,背景是高等数学中的线性代数,比较新颖,体现了知识的衔接。这两道题都属于近年来比较热门的题型,特别是第12题,要求学生能够“活学活用”,能很好地考察学生接收新知识的能力。这两道题的难度和2023年的难度相当,不是很难。 在图形操作与探究题(第22题)方面,考察了平移变换和面积问题,较2023年考察的轴对称变换要难一些。这类题目,大都与图形变换有着密切的关系,能很好地体现了近年来中考试卷“实践与操作”的特点。本题第一问比较简单,属于梯形中比较常见的辅助线,即平移腰,后两问有一定的难度(带有三角形重心的背景),需要学生能灵活运用平移
4、的思想去分析问题、解决问题,部分学生可能会感觉第一问和后两问有一定的跨度,不够连贯。因此学生在平时的学习中要重视三大几何变换的学习,达到“灵活运用”的程度,同时也要加强“三角形的三线四心”的学习。值得说明的是,本题来源于一道类似的竞赛题,原题是已知三角形三条中线的长度,求三角形的面积。从中考到竞赛,也是近年来部分中考压轴题的特色,不少经典的竞赛题能够很好地体现数学中的思想方法,因此对于一些想突破高分的学生来说,可以关注部分经典性的竞赛题目。 在代数综合压轴题方面(第23题),主要考察了二次函数、一次函数以及不等式的相关知识。这类题型大都与函数、方程不等式以及代数式的恒等变形等有关,通常考察数形
5、结合思想以及相关的画图识图能力。本题难度不大,第3问需要学生在平时养成良好的审题读题习惯,培养将文字语言转化成数学语言能力,进而在解题时能抓住出题意图,提高分析问题、解决问题的能力。 在几何综合题方面(第24题),主要考察了旋转思想,等腰三角形的性质及判定等相关知识。相对于2023年的几何综合题(第25题),2023年的几何综合题要简单一些。本题属于探究题,第1问比较简单,第2问略难,考察的是一个比较隐蔽的旋转类全等模型,需要学生在平时的学习中积累一些经典几何辅助线的做法经验,同时注意培养观察、猜想、分析、论证的能力。需要提醒的是,在积累经验的同时,一定要重视能力的培养,这样才能提高解题的灵活
6、性,进而从容应对一些比较新颖的题目。事实上,如果前2问都做出来的话,第3问并不难。此类探究题,通常是从特殊到一般,而且前后问的条件和结论具有很大的相似性和连贯性。因此,在解此类题目时一定要仔细注意前后问之间的共性和差异,抓住前一问解法的本质特点,进而将解法灵活地迁移到后一问中。 在代几综合题方面(第25题),主要考察了平行线间的距离、直线与圆的位置关系、平移、平行四边形的判定等相关的知识。同时本题也考察了数形结合思想、分类讨论的思想以及画图识图的能力。本题前两问难度不大,第三问难度较大,需要学生能灵活运用第2问的结论,同时结合分类讨论思想进行解答,此问能很好地考察学生的思维缜密程度和细致程度,
7、可能不少学生会感到纠结。和2023年中考数学的代几综合题(第24题)相比,今年的难度要大一些,具有很高的区分度,第3问能够全部做出的学生应该很少。因此,学生在平时的学习中,一定要注意归纳总结,将这部分的题型分类归纳,积累相应的解题经验,同时要强化数学思想方法和综合能力的培养,提高解题的灵活性。 三、学习方法指导 总体来说,鉴于中考重视对“双基”的考察,而且简单题加中档题大概有96分,因此对于基础知识这部分,学生在平时的学习中一定要夯实基础,概念要理解透彻,知识之间的联系和区别要梳理清楚,并养成认真审题解题的习惯。同时也要注意这类题目解题的正确率和熟练程度,以便为突破部分难度较大的题目做准备。对
8、于难度较大具有区分度的题目,学生在平时的学习中,一定要注意数学思想方法和综合能力的培养,同时在实践与操作、探究与综合,以及找规律、归纳与概括等之类的题目上,好好练习,积累丰富的经验,还有一定要提高解题的灵活性。最后,也是不容忽视的一点,需要学生培养一定的考试技巧,找到自己的考试状态和节奏,确保考试稳定发挥。 20 14、0 7、04 推荐第2篇:中考数学试卷分析 2023年中考数学试卷分析 分值分析: 选择题6题,4分/题,难度系数A级,预防粗心,共24分;填空12题,4分/题,共48分,第18题难度,正确率为;计算题19题,10分;解方程20题,10分;21题解直角三角形,10分;22题一次
9、函数的实际应用10分,23题简单的几何证明和计算分;题函数和平面直角坐标系的混合运用,难度系数,分;题第一问较简单,难度系数,第问难度系数,第问难度系数,共分。 知识点分析: 、单项式和多项式,初一上册内容;、概率和统计,中位数、众数和平均数;、解不等式,解集的确定;、二次根式、分母有理化、化简和求值;、轴对称图形和中心对称图形;圆与圆的位置关系;、计算,求绝对值;、因式分解提取公因式法;、函数的增减性;、解根式方程;、一元二次方程根的情况;、函数的平移;、概率的计算;、频率分布和统计;、向量的计算三角形法则和平行四边形法则;、相似三角形性质的运用;、正三角形多心合一的问题及应用;、平移和翻折
10、的运用(画图能力);、计算,细心,难度系数;、解方程,难度系数;题解直角三角形的运用,建立直角三角形,难度系数;、应用题或一次函数的运用,难度系数;、三角形一边平行线、比例线段的运用和平心四边形,几何部分,难度系数B; 24、函数。平面直角坐标系和锐角三角比的综合运用,难度系数不是很大,但是因涉及知识点和计算较多,故定为B+或C, 25、圆的综合运用,往往会和相似三角形混合运用,但是今年没有涉及到,圆的比重增加; 分数占比:初一上118分,初一下20分,初二上20分,初二下30分,初三上32分,初三下30分;难易比例为:2:8 做试卷要求:1-6必须全部正确;12-17全部正确,18题正确率5
11、0%,19-23全部正确,24,前两问,25题第一问,只要准确率保证,学员基本能考到130分。 解题技巧:前17题必须要十分的仔细,整体难度系数和含金量较低,但却是粗心学生的噩梦;18题多解和画图能力;19-20,考验学生的基本功,技术含量低;21-23解题步骤的设置很重要。24- 25、先做前2问,最后一问哪怕不会做,也要写出相关的步骤。25题侧重辅助线的作法. 重难点: 重点:函数、解方程、三角形的全等的证明和运用、函数、相似三角形、圆、四边形。 难点:旋转和翻折、三角形的相似的证明和运用。圆与四边形的综合运用。函数和几何的综合运用。 推荐第3篇:中考数学试卷分析 2023年数学中考试卷分
12、析今年的题目与去年相比,在延续以往成功做法的基础上有所创新:选择题由8个题改为10个,填空题由7个调整为5个。概率计算在选择题中考查,第18题对圆的考察由动态型题目改为常规的几何证明与计算,同时第21题不再是考查函数学习过程的探究题,替换为第20题考察反比例函数与一次函数的综合应用;使得整套试题梯度更为合理,有助于学生发挥出自己的数学学习水平! 整套试卷在继续对初中数学的重点知识进行重点考查的同时,着重突出对数学思想和方法的考查。 今年的试卷中着重考查了转化,数形结合(20题),分类讨论,运动思想(第 15、 22、23等题)。此外,21题应用题以海报的形式呈现,题型新颖有趣,体现了数学来源于
13、生活实际,又服务于于生活实际!但21题的描述“所需费用相同”容易产生歧义,估计会造成学生丢分。 整套试卷进一步加强对开放性、探索性试题的考查,如22题的类比探究,23题的“和谐点”等内容,为学生提供自主探索与创新的空间;符合课程标准的要求,体现了对学生数学核心素养的考查要求。 2023年的中招数学试卷通过试题的设计,既可给学生更广阔的思维空间,使其创造性的发挥,为他们提供展示自己聪明才智的机会,又有助于引导师教师在平时的教学中以学生发展为本,尽量发挥学生思维活跃的优势,培养学生的创新精神和实践能力。为学生的可持续发展打好基础! 今后复习方向: 一、切实抓好“双基”的训练。 初中数学的基础知识、
14、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。一是要紧扣教材,依据教材的要求,不断提高,注重基础。二是要突出复习的特点上出新意,以调动学生的积极性,提高复习效率。从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在每一个章节复习中,为了有效地使学生弄清知识的结构,让学生按照自己的实际查漏补缺,有目的地自由复习。要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握,方法的运用和能力的提高。 二、抓好教材中例题、习题的归类、变式的教学。 在数学复习课教学中,挖掘教材中的例题、习题等的功能,既是大面积提高
15、教学质量的需要,又是对付考试的一种手段。因此在复习中根据教学的目的、教学的重点和学生实际,对相关例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的典例题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。 三、落实各种数学思想与数学方法的训练,提高学生的数学素质。 理解掌握各种数学思想和方法是形成数学技能技巧,提高数学的能力的前提。通过不同形式的训练,使学生熟练掌握重要数学思想方法。 推荐参考书的建议: 在今后的复习中,用哪些参考书较好,我个人认为,只要是重基础,灵活性较强,难易程度适中,有梯度,紧扣大纲的,都是好书。像今年用的试题研究就不错
16、,如果针对每个知识点有对应的习题,我想会更好一点。 推荐第4篇:中考数学试卷分析 中考数学试卷分析 *年的荆门市数学中考试题在继承我市近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、以人为本”的命题原则,贯彻全日制义务教育数学课程标准(实验稿)(以下简称数学课程标准)和荆门市*年初中毕业生学业考试数学科大纲(以下简称数学科)所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识。 一、总体评价 试题命制严格按照课程标准和学科说明的相关要求,充分体现 和落实新课程改革的理念和精神、整套试题覆盖面广,题量适当
17、,难度与数学科大纲的要求基本一致、在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、应用性、综合性。 1、整体稳定,局部调整 今年中考,荆门市实行网上阅卷,为此,今年的数学试卷在保证整体格局稳定的基础上,作出了一些调整:填空题由原来的10个小题减至8个;解答题由原来的8个小题减至 7、部分试题的分值和考查重点,也作了相应的调整。 2、全面考查,突出重点 整套试题所关注的内容,是支撑学科的基本知识、基本技能和基本思想、强调考查学生在这一学段所必须掌握的通法通则,淡化繁杂的运算和技巧性很强的方法,回避了大阅读量的题目。 试题重点考查了代数式、方程(组)与不等式(组)、函数、
18、统计与概率、三角形与四边形等学科的核心内容, 同时关注了函数与方程思想、数形结合思想、分类讨论思想等数学思想,以及特殊与一般、运动与变化、矛盾与转化等数学观念、试题突出了对学生研究问题的策略和运用数学知识解决实际问题能力的考查。 3、层次分明,确保试题合理的难度和区分度 同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度。 4、科学严谨,确保试题的信度、效度 试卷题目陈述简明,图形、图象规范美观、凡是联系实际题目,情景不仅不会干扰学生对其内容的分析与理解,而且有助于学生对其中数量关系的把握,这就确保
19、了考试具有较高的信度。 试题的设置,在提问方式、分值和位置等方面,充分考虑了学生不同的 解答习惯、学习水平和承受能力、除压轴题以外的几道解答题,设23问,形成问题串,起点很低,循序渐进,层层铺垫;压轴题思维含量较高,具有一定的挑战性,要解答完整、准确,则需要具备较强的数学能力、这样的布局,能确保考试具有较高的信度和效度。 具体情况见下表:(略) 二、试题的主要特点 1、注重“三基”核心内容的考查,恰当渗透人文性、教育性。 2、贴近生活实际,考查学生数学应用意识。 应用数学解决问题的能力既是课程标准中的一个重要的课程目标,也是学生对相关教学内容理解水平的一个标志。数学课程标准明确指出:中学阶段的
20、数学教学应结合具体的教学内容采用“问题情境建立模型解释、应用与拓展”的模式展开,教学中要创造这种模式的教学情境,让学生经历数学知识的发生、形成与应用过程,新课程 标准特别强调数学背景的“现实性”和“数学化”。如第21题,以学生日常生活中的常见事例为题材,设置的一道背景公平的实际问题,主要考查考生的商品意识和建模意识,考查的知识有方程与不等式、方程,通过这类试题的考查,使学生更加关注身边的数学,生活中的数学,用数学的眼光去观察、分析社会,用所学的数学知识去解决实际问题,培养学生的数学应用意识。 3、设置开放探究问题,关注学生的数学思考。 承认差异,尊重个性,给每一位学生充分的发展空间是课标提倡的
21、一个基本理念,而给学生以更多的自主性,让不同类型,不同水平的学生尽可能地展示自己的数学才能是近年来提倡的一个命题原则。试卷在这方面作了一些努力,通过设计开放探究性问题,打破单一的思维模式,形成灵活多样的思维结构,使学生对问题的思考更自由、更发散、更创新,从而进一步发展学生 的思维个性。如第18题属规律探究归纳题,要求考生具备有从特殊到一般的数学思考方法和有较强的归纳探究能力,才能正确地作出解答。 4、设置图形变换,考察学生实践操作能力。 课标一再强调学生学习方式的变革,认为:“有效的数学学习活动不能以单纯的模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”。对学生动手操作和探究
22、能力的培养和考查,是素质教育所要求的重要内容之一,让学生亲自参与活动,进行探索与发现,以自己的体验获取知识与技能是新课标的目标,为了体现新课标精神,试卷设计了计算量小、思维空间大的操作探索题目。如第3题旨在考查三角形中角之间的关系,但打破过去单一的问题呈现方式,而是与折叠操作相结合,有机的融入了轴对称变换的相关知识。 5、设置字母参数,考查综合能力 对于初中毕业生来说,不仅要掌握必要的数学基础知识和基本技能,还应具备有一定的分析问题和解决问题的能力及数学综合素质,对这种要求的考查,一般都是放在压轴题来实现。而这类压轴题都以所学的重点知识为载体,融数形结合为一体,以探究性试题形式呈现。在设计方法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年中 数学试卷 分析 教学策略 精选
限制150内