2023年2.5等比数列的前n项和说课稿.docx
《2023年2.5等比数列的前n项和说课稿.docx》由会员分享,可在线阅读,更多相关《2023年2.5等比数列的前n项和说课稿.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年2.5等比数列的前n项和说课稿 等比数列的前n项和说课稿 尊敬的各位评委,老师: 你们好,我是047号考生,今天我说课的课题是人教版普通高中课程标准实验教材数学必修5第二章第五节等比数列的前n项和。为了说清楚我对本节课的整体设计整体设计思路,下面我我将从:教学理念、教材内容分析、教学目标及学情分析、教学的重难点分析、教学方法的分析、教学过程的设计六个方面加以说明。 一、教学理念 新的课程标准明确指出 “数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值 因此,创造性地使用教材,积极开发、利用各种教学
2、资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变 二、教材内容分析 在学习等比数列前n项和公式之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和、数列极限打下基础.本节课既是本章的重点,同时也是教材的重点.从高中数学的整体内容来看,数列这一章是高中数学的重要内容之一,在整个高中数学领域里占据着重要地位,也起着决定性的作用.首先:数列有着广泛的实际应用.
3、例如产品的规格设计、储蓄、分期付款的有关计算等.其次:数列有着承前启后的作用.数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础.再次:数列也是培养提高学生思维能力的好题材.学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高. 三、教学目标及学情分析 1 作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识.以下是我的教学目标分析和学情分析: 1、教学目标分析 根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,依据课标我制定了如下的教学目标: 知识与技能 理
4、解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题 过程与方法 通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力 情感态度与价值观 通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点;培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神. 2、学情分析 学情分析主要通过以下两方面来展开: 知识基础 学生在学习本节内容之前已经学习等差数列,知道等差数列的前n项和的公式由来;熟悉等比
5、数列的通项公式,知道等比性质.思维水平 学生具备一定的数学思想方法,能够与等差数列的求和公式的推导过程联系,形成类比迁移,而且在情感上也具备了学习新知识的渴求.但是学生对等比数列的前n项和的推导方法-错位相减法比较陌生,学习思维上存在障碍.并且学生考虑事情缺乏全面性,在推导过程中容易忽略公比q=1的情形. 四、教学的重难点分析 结合前面的教材分析、三维目标的确定以及学情分析,我总结了总结课的重难点: 教学重点:公式的推导、公式的特点和公式的应用。 教学难点:公式的推导方法和公式的灵活运用。公式推导所使用的“错位 2 相减法”是高中数学的数列求和方法中最常用的方法之一,它蕴涵了重要的数学思想,所
6、以既是重点也是难点。 五、教学方法分析 1、教法 数学是一门培养和发展人的思维的重要学科,因此在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进和启发式教学原则,我进行这样的教学设计:在教师的引导下,创设情景,通过开放式问题的设置来启发学生进行思考,在思考中体会数学概念形成过程中蕴涵的数学方法和思想,使之获得内心感受.本节课将借助计算机多媒体辅助教学,采用“多媒体优化组合激励发现”式教学模式进行教学.该模式能够将教学过程中的各要素,如教师、学生、教材、教法等进行积极的整合,使其融为一体,创造最佳的教学氛围.主要包括启发式讲解、互动式讨论
7、、研究式探索、反馈式评价. 2、学法 数学作为基础教育的核心学科之一,转变学生的数学学习方式,变学生被动接受式学习为主动参与式学习,不仅有利于提高学生的整体数学素养,也有利于促进学生整体学习方式的转变.在课堂结构上我根据学生的认知层次,设计了(1)创设情景、(2)观察归纳、(3)讨论研究、(4)即时训练、(5)总结反思、(6)任务延续,六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目的.自主探索、观察发现、类比猜想、合作交流. 3、教学手段 利用多媒体和POWERPOINT软件进行辅助教学. 六、教学过程分析 1、复习回顾: (1)等比数列及等比数列通项公式。 (2)回忆等差数列前n
8、项和公式的推导过程,是用什么方法推导的。 设计意图:复习上节课的内容,巩固等比数列的相关知识,为学习等比数列 3 的前n项和的求法作铺垫。 2、创设情境,提出问题 国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者.这个故事大家听说过吗? “请在第一个格子里放上1颗麦粒,第二个格子里放上2颗麦粒,第三个格子里放上4颗麦粒,以此类推.每一个格子里放的麦粒都是前一个格子里放的麦粒的2倍.直到第64个格子.请给我足够的麦粒以实现上述要求.”这就是国际象棋发明者向国王提出的要求。假定千粒麦子的质量为40 g,按目前世界小麦年度产量约60亿吨计.你认为国王能不能满足他的要求。怎样计算?请列出算式。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 2.5 等比数列 说课稿
限制150内