中考数学专题训练【方案设计型】能力提升训练与解析.doc
《中考数学专题训练【方案设计型】能力提升训练与解析.doc》由会员分享,可在线阅读,更多相关《中考数学专题训练【方案设计型】能力提升训练与解析.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学专题之【方案设计型】精品解析中考数学专题训练【方案设计型】能力提升训练与解析考点:一次方程、方程组、分式方程、不等式组、一次函数、二次函数、【例1】.某商店准备购进甲、乙两种商品已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润售价进价)?解:(1)设购进甲种商品x件,购进乙种商品y件,根据题意,得解得:答:商
2、店购进甲种商品40件,购进乙种商品60件(2)设商店购进甲种商品a件,则购进乙种商品(100a)件,根据题意列,得解得20a22.总利润W5a10(100a)5a1 000,W是关于x的一次函数,W随x的增大而减小,当x20时,W有最大值,此时W900,且1002080,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【例2】今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:月用水量(单位:吨)单价(单位:元/吨)不大于10吨部分1.5大
3、于10吨,且不大于m吨部分(20m50)2大于m吨部分3(1)若某用户六月份的用水量为18吨,求其应缴纳的水费;(2)记该用户六月份的用水量为x吨,缴纳水费y元,试列出y关于x的函数式;(3)若该用户六月份的用水量为40吨,缴纳水费y元的取值范围为70y90,试求m的取值范围解:(1)应缴纳水费:101。5(1810)231(元)(2)当0x10时,y1。5x;当10m时,y152(m10)3(xm)3xm5.y(3)当40m50时,y240575(元),满足当20m40时,y340m5115m,则70115m90,25m45,即25m40。综上得,25m50.【例3】潼南绿色无公害蔬菜基地有
4、甲、乙两种植户,他们种植了A,B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲3112 500乙2316 500说明:不同种植户种植的同类蔬菜每亩的平均收入相等;亩为土地面积单位(1)求A,B两类蔬菜每亩的平均收入各是多少元;(2)某种植户准备租20亩地用来种植A,B两类蔬菜,为了使总收入不低于63 000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案解:(1)设A,B两类蔬菜每亩平均收入分别是x元,y元由题意,得解得答:A,B两类蔬菜每亩平均收
5、入分别是3 000元,3 500元(2)设用来种植A类蔬菜的面积为a亩,则用来种植B类蔬菜的面积为(20a)亩由题意,得解得10a14.a取整数,为:11,12,13,14。租地方案为:类别种植面积(亩)A11121314B9876【例4】.某学校计划将校园内形状为锐角ABC的空地(如图)进行改造,将它分割成AHG、BHE、CGF和矩形EFGH四部分,且矩形EFGH作为停车场,经测量BC=120m,高AD=80m,(1)若学校计划在AHG上种草,在BHE、CGF上都种花,如何设计矩形的长、宽,使得种草的面积与种花的面积相等?(2)若种草的投资是每平方米6元,种花的投资是每平方米10元,停车场铺
6、地砖投资是每平方米4元,又如何设计矩形的长、宽,使得ABC空地改造投资最小?最小为多少?解、(1)设FG=x米,则AK=(80x)米由AHGABCBC=120,AD=80可得:BE+FC=120=解得x=40当FG的长为40米时,种草的面积和种花的面积相等。(2)设改造后的总投资为W元W=6(x20)2+26400当x=20时,W最小=36400答:当矩形EFGH的边FG长为20米时,空地改造的总投资最小,最小值为26400元。【例5】.我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。现有A型、B型、C
7、型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满。根据下表信息,解答问题。特产车型苦荞茶青花椒野生蘑菇每辆汽车运载量(吨)A型22B型42C型16车型ABC每辆车运费(元)150018002000(1)设A型汽车安排辆,B 型汽车安排辆,求与之间的函数关系式。(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案。(3)为节约运费,应采用(2)中哪种方案?并求出最少运费。 解:(1)法根据题意得化简得:(2)由 得 ,解得 .为正整数,。故车辆安排有三种方案,即: 方案一:型车辆,型车辆,型车辆 方案二:型车辆,型车辆,型车辆 方案三:型车辆,型车辆
8、,型车辆 (3)设总运费为元,则随的增大而增大,且当时,元答:为节约运费,应采用 中方案一,最少运费为37100元。【例6】。为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程现在甲、乙两个工程队有能力承包这个工程经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用解:(1)设甲
9、工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天 根据题意得: 方程两边同乘以x(x+25),得30(x+25)+30x=x(x+25),即x235x750=0解之,得x1=50,x2=15 经检验,x1=50,x2=15都是原方程的解但x2=15不符合题意,应舍去当x=50时,x+25=75答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天(2)此问题只要设计出符合条件的一种方案即可方案一:由甲工程队单独完成 所需费用为:250050=125000(元)方案二:由甲乙两队合作完成所需费用为:(2500+2000)30=135000(元)【例7】.“五一期
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方案设计型 中考 数学 专题 训练 方案设计 能力 提升 解析
限制150内