《线性系统的时域分析典型输入信号.ppt》由会员分享,可在线阅读,更多相关《线性系统的时域分析典型输入信号.ppt(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三章 线性系统的时域分析1 典型输入信号典型输入信号tr(t)Rtr(t)Rtr(t)t0一阶跃函数一阶跃函数二斜坡函数(匀速函数)三抛物线函数(匀加速函数三抛物线函数(匀加速函数)R=1时,称为单位阶跃函数,记为l(t)。R(S)=1/S。R=1时,称为单位斜坡函数。R=1/2时,称为单位抛物线函数。tr(t)h1/htr(t)r(t)t四脉冲函数五正弦函数当时,则称为单位脉冲函数 2.一阶系统的时域分析一阶系统:以一阶微分方程作为运动方程的控制系统。一阶系统:以一阶微分方程作为运动方程的控制系统。一单一单 位位 阶阶 跃跃 响响 应应标准形式传递函数1AT0.632斜率1/T1/TTtr
2、(t)TTtr(t)当输入信号为理想单位脉冲函数,系统的输出称为单位脉冲响应。二单二单 位位 脉脉 冲冲 响响 应应三单三单 位位 斜斜 坡坡 响响 应应跟踪误差为T。四四 单单 位位 抛抛 物物 线线 响响 应应五结五结 果果 分分 析析输入信号的关系为:而时间响应间的关系为:3二阶系统的时域分析R(s)C(s)R(s)C(s)二阶系统的定义:用二阶微分方程描述的系统微分方程的标准形式:阻尼比,无阻尼自振频率。传递函数及方框图等效的开环传函及方框图s1s2一单一单 位位 阶阶 跃跃 响响 应应1.闭闭 环环 极极 点点 的的 分分 布布二阶系统的特征方程为两根为位于平面的左半部的取值不同,特
3、征根不同。(1)(欠阻尼)有一对共轭复根s2s1s1s2s2s1s1s2(2)(临界阻尼),两相等实根(3)(过阻尼),两不等实根(4)(无阻尼),一对纯虚根(5),位于右半平面2.二二 阶阶 系系 统统 的的 单单 位位 阶阶 跃跃 响响 应应一般在0.40.8间响应曲线较好tc(t)trtptsc()二二.二二 阶阶 系系 统统 的的 性性 能能 指指 标标1.定定 义义超调量:上升时间:峰值时间:单位阶跃响应达到第一个峰值所需时间。振荡次数:在调整时间内响应过程穿越其稳态值次数的一半定义为振荡次数。调整时间:单位阶跃响应进入到使下式成立所需时间。,一般取单位阶跃响应第一次达到其稳态值所需
4、时间。2.性性 能能 指指 标标 的的 计计 算算(1)上升时间(2)峰值时间(3)超调量1(4)调整时间(5)振荡次数N三计三计 算算 举举 例例C(s)R(s)四二阶系统的脉冲响应(1)无阻尼脉冲响应(2)欠阻尼脉冲响应(3)临界阻尼脉冲响应(4)过阻尼脉冲响应ttpkmax01+tp脉冲响应与阶跃响应的关系五具有闭环零点的二阶系统的单位阶跃响应五具有闭环零点的二阶系统的单位阶跃响应二阶系统的闭环传函具有如下标准形式当时,对欠阻尼情况对对 应应 的的 性性 能能 指指 标标 为为说明:说明:1.闭闭 环环 负负 实实 零零 点点 的的 主主 要要 作作 用用 在在 于于 加加 速速 二二
5、阶阶 系系 统统 的的 响响 应应 过过程程(起起 始始 段段);2.削削 弱弱 系系 统统 阻阻 尼,超尼,超 调调 量量 大;大;3.合合 理理 的的 取取 值值 范范 围围 为为.零状态响应零输入响应六六.初初 始始 条条 件件 不不 为为 零零 的的 二二 阶阶 系系 统统 的的 响响 应应 过过 程程当初始条件不为零时,求拉氏变换得可见,具有相同的衰减振荡特性4高阶系统的时域分析Res1s2s3Im在高阶系统的诸多闭环极点中,把无闭环零点靠近,且其它闭环极点与虚轴的距离都在该复数极点与虚轴距离的五倍以上,则称其为闭环主导极点。一闭环主导极点的概念二高阶系统单位阶跃响应的近似分析由此可
6、见高阶系统的暂态响应是一阶和二阶系统。暂态响应分量的合成则有如下结论:(1)各分量衰减的快慢由指数衰减系数及决定。系统的极点在S平面左半部距虚轴愈远,相应的暂态分量衰减愈快。(2)系数和不仅与S平面中的极点位置有关,并且与零点有关。a.零极点相互靠近,且离虚轴较远,越小,对影响越小;b.零极点很靠近,对几乎没影响;c.零极点重合(偶极子),对无任何影响;d.极点附近无零极点,且靠近虚轴,则对影响大。(3)若时,则高阶系统近似成二阶系统分析。5线性系统的稳定性与稳定判据一稳定的概念与定义定义:若线性系统在初始扰动的影响下,其过渡过程随时间的推移逐渐衰减并趋于零,则称系统为渐近稳定,简称稳定;反之
7、若在初始扰动影响下,系统的过渡过程随时间推移而发散,则称其不稳定。二线性系统稳定的充要条件稳定性是系统自身的固有特性,与外界输入信号无关。线性系统稳定的充要条件:其特征根全部位于S平面的左半部。三稳定判据1.Routh稳定判据系统的特征方程为必要条件(1)特征方程的各项系数ai(i=1,2,n)都不为零;(2)特征方程的各项系数ai(i=1,2,n)具有相同 的符号。充分条件:劳斯阵列第一列所有元素为正。劳劳 斯斯 阵阵 列列符号改变一次符号改变一次改变一次改变一次2.Routh 判判 据据 的的 特特 殊殊 情情 况况 a.某行第一个元素为零,其余均不为零。方法一:改变一次改变一次方法二:b
8、.劳斯表某行全为零说明特征方程中存在一些大小相等,但方向相反的根。C(S)R(S)-3.Routh判据的应用6反馈系统的误差与偏差1.误差的定义一误差期望输出cr(t)与实际输出c(t)之差定义为反馈系统响应r(t)的误差信号,即算子,反映cr(t)与r(t)之间的比例微分或积分等基本函数关系,当系统所要完成的控制任务已确定时,便是已知的。2.反馈系统的确定一非单位反馈系统如图(a)所示,其等效方框图为图(b)。R(s)F(s)C(s)G2(s)G1(s)H(s)1/H(s)Cr(s)E(s)+-(b)图F(s)G1(s)G2(s)H(s)Y(s)R(s)-+C(s)(a)图G1(S)G2(S
9、)H(S)Y(S)C(S)E(S)R(S)-F(S)3.偏差的定义说明说明:1)误差是从系统输出端来定义的,它是输出的希望值与实际值之差,这种方法定义的误差在性能指标提法中经常使用,但在实际系统中有时无法测量,因而一般只具有数学意义。2)偏差是从系统的输入端来定义的,它是系统输入信号与主反馈信号之差,这种方法定义的误差,在实际系统中是可以测量的,因而具有一定的物理意义。3)对单位反馈系统而言,误差与偏差是一致的。4)有些书上对误差、偏差不加区分,只是从不同的着眼点(输入、输出点)来定义,但在本书是加以区分的。4.系系 统统 响响 应应 扰扰 动动 信信 号号 的的 误误 差差crf(t)为系统
10、响应扰动信号f(t)的期望输出,考虑到实际系统应不受扰动信号的影响,故应有crf(t)=0,这样7反馈系统的稳态误差及计算R(s)C(s)Y(s)F(s)G1(s)G2(s)H(s)-+稳态误差:反馈系统误差信号e(t)的稳态分量,记作ess(t)。动态误差:反馈系统误差信号e(t)的暂态分量,记作ets(t)。一响应控制信号r(t)的稳态误差对稳定系统,(1)R(s)仅有单极点时设si为的极点,为R(s)的极点,则一般认为在tts之后动态误差ets(t)基本消失,这时只含有稳态误差ess(t),即对于稳定系统的闭环极点都具有负实部,所以有由此可看出,ess(t)不仅和描述系统特性的闭环传函有
11、关,而且还取决于控制输入的极点。(2)R(s)含有重极点时当控制输入r(t)的拉氏变换R(s)含有r重的极点,而其余lr个极点各不相同时。R(s)C(s)Y(s)F(s)G1(s)G2(s)H(s)-+二反馈系统响应扰动信号f(t)的稳态误差(1)F(s)只含有单根时(2)当F(s)含有重根时设F(s)含有r重的极点,其余kr重极点个不相同。三误差系数误差传递函数为这是一个无穷级数,它的收敛域是s=0邻域,这相当于在时间域内时成立的误差级数。因此在所有初始条件为零的条件下,对上式进行拉氏变换,就得到稳态误差表达:将在s=0的邻域内展开成Taylor级数,有1.一般方法同理可得则稳态误差可以写成
12、这里ci,cfi称为误差系数。2.系统阶次较高时(这里介绍一种简便算法)(1)将已知的开环传函按升幂排列成如下形式(2)写出多项式比值形式的误差传递函数(3)对上式用长除法得(4)求E(s)C(s)R(s)Y(s)F(s)G1(s)G2(s)-+(1)系统型别四稳态误差终值的计算设系统的开环传函为称为零型系统称为I型系统称为II型系统系统的型别以来划分优点:1可以根据已知的输入信号形式,迅速判断是否存在稳态误差及稳态误差的大小。2系统阶数m,n的大小与系统型别无关,且不影响稳态误差的数值。2.利用终值定理计算应用终值定理的条件是sE(s)在s右半平面及虚轴上解析,或者说sE(s)的极点位于左半
13、平面(包括坐标原点)。3静态误差系数已知定义速度误差系数定义位置误差系数定义ess=1/ka是加速度误差误差归类:8顺馈控制的误差分析R(s)C(s)G1(s)Gf(s)Gc(s)G(s)F(s)+一应用顺馈补偿扰动信号对系统输出的影响说明:1.顺馈补偿实际上是应用开环控制方法去补偿扰动信号的影响,所以它不改变反馈系统的特性(如稳定性)。2.对补偿装置的参数要求有较高的稳定性,否则削弱补偿效果。3.由于顺馈补偿的存在,可降低对反馈系统的要求,因可测干扰由顺馈完全或近似补偿,由其他干扰引起的误差可由反馈系统予以消除。C(S)Kf/KDG1(S)KGc(S)G2(S)G(S)Gf(S)F(S)=-ML(S)R(S)G1(S)G2(S)Gbc(S)R(S)C(S)1.原理:二应用顺馈减小系统控制信号的误差在反馈基础上引入控制信号的微分作为系统的附加输入从而减小号的误差。系统响应控制信2.对误差和稳定性的影响a.误差由上式可见系统型别由I型提高到II型。系统由I型变为III型,从而使稳定性能大为提高。b.稳定R(s)C(s)Gbc(s)-+
限制150内