自动控制原理第四章根轨迹法剖析资料.ppt
《自动控制原理第四章根轨迹法剖析资料.ppt》由会员分享,可在线阅读,更多相关《自动控制原理第四章根轨迹法剖析资料.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、自动控制原理第四章根轨迹法剖析本章主要内容本章主要内容q以以K为变量的为变量的常规根轨迹常规根轨迹的绘制方法的绘制方法q以其它参数为变量的以其它参数为变量的广义根轨迹广义根轨迹的绘制方法的绘制方法(自学)(自学)q控制系统的根轨迹分析方法(自学)控制系统的根轨迹分析方法(自学)4.1根轨迹的概念根轨迹的概念定义:定义:根轨迹根轨迹系统中某一参数在全部范围内变化时,系统中某一参数在全部范围内变化时,系统闭环特征根随之变化的轨迹。系统闭环特征根随之变化的轨迹。l l以除以除K以外的系统参数为参变量的根轨迹以外的系统参数为参变量的根轨迹广广义根轨迹义根轨迹。l l常规根轨迹常规根轨迹法以开环增益法以
2、开环增益K做为参数画出根轨迹的。做为参数画出根轨迹的。1根轨迹举例根轨迹举例例例4-1二阶系统的方块图如下,绘制它的根轨迹。二阶系统的方块图如下,绘制它的根轨迹。K开环传递函数:开环传递函数:分析分析:有有2个开环极点个开环极点没有开环零点。没有开环零点。闭环特征方程闭环特征方程求出求出2个闭环特征根:个闭环特征根:闭环特征根是闭环特征根是K的函数。当的函数。当K从从0变化,变化,闭环特征根在根平面上形成根轨迹。闭环特征根在根平面上形成根轨迹。闭环传递函数:闭环传递函数:K取不同值:取不同值:(等于两个开环极点)(等于两个开环极点)ImRe0(两根重合于两根重合于0.5处处)(即(即0K1/4
3、,两根为实根)两根为实根)10.5(两根为共轭复数根,其实部为两根为共轭复数根,其实部为0.5)随着随着K的增加闭环极点右转进入复的增加闭环极点右转进入复平面,实部不变,虚部逐渐加大平面,实部不变,虚部逐渐加大总结:总结:q有两个闭环极点,有有两个闭环极点,有2条根轨迹。条根轨迹。q根轨迹是从根轨迹是从开环极点开环极点出发点。出发点。q通过选择增益通过选择增益K,可使闭环极点落可使闭环极点落在根轨迹的任何位置上。在根轨迹的任何位置上。q如果根轨迹上某一点满足动态特如果根轨迹上某一点满足动态特性要求,可以计算该点的性要求,可以计算该点的K值实现值实现设计要求。设计要求。ImRe01 0.5 这是
4、个?阶系统,这是个?阶系统,2q根轨迹上的点与根轨迹上的点与K值一一对应。根轨迹是连续的。值一一对应。根轨迹是连续的。q当两条根轨迹在分合点相遇再离开当两条根轨迹在分合点相遇再离开时遵循右转法则。时遵循右转法则。4.2根轨迹绘制的基本规则根轨迹绘制的基本规则1、根轨迹的基本关系式、根轨迹的基本关系式典型的反馈控制系统如图典型的反馈控制系统如图:G(s)H(s)其其开环传递函数:开环传递函数:其中:其中:K:开环增益,开环增益,开环零点,开环零点,开环极点。开环极点。闭环传递函数:闭环传递函数:闭环特征方程为:闭环特征方程为:它们满足:它们满足:G(s)H(s)G(s)H(s)是复数,在复平面上
5、对应一个矢量:是复数,在复平面上对应一个矢量:-1绘制根轨迹必须满足的基本条件:绘制根轨迹必须满足的基本条件:(相角公式:积的相角等于相角的和,(相角公式:积的相角等于相角的和,商的相角等于相角的差)商的相角等于相角的差)幅值条件幅值条件相角条件相角条件(积的模等于模的积,商的模等于模的商)(积的模等于模的积,商的模等于模的商)注意:注意:1.这两个条件是从系统闭环特征方程中导出的,这两个条件是从系统闭环特征方程中导出的,所有满足以上两式的所有满足以上两式的s值值都是系统的都是系统的特征根特征根,把它们在,把它们在s平面上画出,就构成了平面上画出,就构成了根轨迹根轨迹。2.观察两式,均与开环零
6、极点有关,也就是说,观察两式,均与开环零极点有关,也就是说,根轨根轨迹是利用开环零极点求出闭环极点。迹是利用开环零极点求出闭环极点。画法:画法:1.利用相角条件,找出所有满足相角条件的利用相角条件,找出所有满足相角条件的s值,连值,连成根轨迹。成根轨迹。2.确定某一特征根后,利用幅值条件,求出对应的确定某一特征根后,利用幅值条件,求出对应的K值。值。相角条件相角条件幅值条件幅值条件2、绘制根轨迹的基本规则、绘制根轨迹的基本规则例例4-4要求画出根轨迹。要求画出根轨迹。某单位反馈系统某单位反馈系统分析:分析:1个开环零点,个开环零点,3个开环极点,个开环极点,0-5-2-10规则一、规则一、根轨
7、迹的分支数:根轨迹的分支数等于根轨迹的分支数:根轨迹的分支数等于开环开环开环开环极点数极点数极点数极点数n n和零点数和零点数m中最大者中最大者。闭环系统的阶次为闭环系统的阶次为3,有,有3条根轨迹条根轨迹。闭环极点数闭环极点数=闭环特征方程的阶次闭环特征方程的阶次=开环传递函数的阶次开环传递函数的阶次=开环极点数开环极点数例中,例中,规则二、规则二、根轨迹的起止:每条根轨迹都起始于开环根轨迹的起止:每条根轨迹都起始于开环极点,终止于开环零点或无穷远点。极点,终止于开环零点或无穷远点。根轨迹是根轨迹是K从从0时的根变化轨迹,因此必须时的根变化轨迹,因此必须起于起于K=0处,止于处,止于K=处处
8、。观察幅值条件:观察幅值条件:如果如果nm,m条根轨迹趋向开环的条根轨迹趋向开环的m个零点,而个零点,而另另n-m条根轨迹趋向无穷远处。条根轨迹趋向无穷远处。对于例题,对于例题,3条根轨迹始于条根轨迹始于3个开环极点,一条止个开环极点,一条止于开环零点,另两条(于开环零点,另两条(n-m=2)趋于无穷远处。趋于无穷远处。规则三、规则三、根轨迹的连续对称性:根轨迹各分支是连根轨迹的连续对称性:根轨迹各分支是连续的,且对称于实轴。续的,且对称于实轴。证明:(证明:(1)连续性)连续性从代数方程的性质可知,当方程中的系数连续变化从代数方程的性质可知,当方程中的系数连续变化时,方程的根也连续,因此特征
9、方程的根轨迹是连时,方程的根也连续,因此特征方程的根轨迹是连续的。续的。证明:(证明:(2)对称性)对称性因为特征方程的根或为实数,或为共轭复数,所以因为特征方程的根或为实数,或为共轭复数,所以根轨迹对称于实轴。根轨迹对称于实轴。对于例题,对于例题,在实轴上的根轨迹:在实轴上的根轨迹:0 1 2 5一条始于开环极点,止于开环零点,一条始于开环极点,止于开环零点,另两条始于开环极点,止于无穷远处。另两条始于开环极点,止于无穷远处。规则四、规则四、实轴上的根轨迹:在实轴上某线段右侧的实数实轴上的根轨迹:在实轴上某线段右侧的实数开环零、极点个数之和为奇数,则该线段为根轨迹。开环零、极点个数之和为奇数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 原理 第四 轨迹 剖析 资料
限制150内