计量经济学王万珺课件虚拟变量模型培训资料.ppt
《计量经济学王万珺课件虚拟变量模型培训资料.ppt》由会员分享,可在线阅读,更多相关《计量经济学王万珺课件虚拟变量模型培训资料.ppt(57页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、计量经济学王万珺课件虚拟变量模型第八章第八章 虚拟变量模型虚拟变量模型 学习目的学习目的 了解虚拟变量、虚拟变量模型的概念,掌握虚拟变量设置的了解虚拟变量、虚拟变量模型的概念,掌握虚拟变量设置的原则和引入模型的方法。原则和引入模型的方法。基本要求基本要求1)认识到虚拟变量是建立计量经济学模型经常会遇到的问题;认识到虚拟变量是建立计量经济学模型经常会遇到的问题;2)了解虚拟变量、虚拟变量模型的概念;了解虚拟变量、虚拟变量模型的概念;3)掌握虚拟变量设置的原则、虚拟变量模型的建模方法及应用。掌握虚拟变量设置的原则、虚拟变量模型的建模方法及应用。虚拟变量虚拟变量虚拟变量模型虚拟变量模型第八章第八章
2、虚拟变量模型虚拟变量模型第一节第一节 虚拟变量虚拟变量虚拟变量的引入虚拟变量的引入虚拟变量的设置原则虚拟变量的设置原则一、虚拟变量一、虚拟变量为什么要引入为什么要引入“虚拟变量虚拟变量”?如商品需求量、价格、收入、产量等如商品需求量、价格、收入、产量等许多经济变量是可以定量度量的或者说是可以直接观测的许多经济变量是可以定量度量的或者说是可以直接观测的但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测 如职业、性别对收入的影响,战争、自然灾害对如职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节的影响,季节对某些产品对
3、某些产品(如冷饮如冷饮)销售的影响等。销售的影响等。为了能够在模型中反映这些因素的影响,并提高模型的精度,需要将为了能够在模型中反映这些因素的影响,并提高模型的精度,需要将它们人为地它们人为地“量化量化”,这种,这种“量化量化”通常是通过引入通常是通过引入“虚拟变量虚拟变量”来完成的。来完成的。这种用两个相异数字来表示对被解释变量有重要影响而自身又这种用两个相异数字来表示对被解释变量有重要影响而自身又没有观测数值的一类变量,称为没有观测数值的一类变量,称为虚拟变量虚拟变量(dummy variables)。虚拟变量也称为哑变量或定性变量。虚拟变量也称为哑变量或定性变量。虚拟变量的特点是:虚拟变
4、量的特点是:1虚拟变量是对经济变化有重要影响的不可测变量。虚拟变量是对经济变化有重要影响的不可测变量。2虚拟变量是赋值变量,一般根据这些因素的属性类型,构造只取虚拟变量是赋值变量,一般根据这些因素的属性类型,构造只取“0”或或“1”的人工变量,通常称为虚拟变量,记为的人工变量,通常称为虚拟变量,记为D。这是为了便于计算而。这是为了便于计算而把定性因素这样数量化的,所以虚拟变量的数值只表示变量的性质而不表把定性因素这样数量化的,所以虚拟变量的数值只表示变量的性质而不表示变量的数值。示变量的数值。基础类型和肯定类型取值为基础类型和肯定类型取值为1;一般地,在虚拟变量的设置中,一般地,在虚拟变量的设
5、置中,比较类型和否定类型取值为比较类型和否定类型取值为0。例如:例如:1)表示性别的虚拟变量可取为)表示性别的虚拟变量可取为D1=1 男性男性 0 女性女性2)表示文化程度的虚拟变量可取为)表示文化程度的虚拟变量可取为D2=1 本科及以上学历本科及以上学历 0 本科以下学历本科以下学历3)表示地区的虚拟变量可取为)表示地区的虚拟变量可取为D3=1 城市城市 0 农村农村4)表示消费心理的虚拟变量可取为)表示消费心理的虚拟变量可取为D4=1 喜欢某种商品喜欢某种商品 0 不喜欢某种商品不喜欢某种商品5)表示天气变化的虚拟变量可取为)表示天气变化的虚拟变量可取为D5=0 雨天雨天 1 晴天晴天二、
6、虚拟变量模型二、虚拟变量模型同时含有一般解释变量与虚拟变量的模型称为同时含有一般解释变量与虚拟变量的模型称为虚拟变量模型虚拟变量模型。在模型中,虚拟变量可作为解释变量,也可作为被解释变量,但主要在模型中,虚拟变量可作为解释变量,也可作为被解释变量,但主要是用作是用作解释变量解释变量。一个以性别为虚拟变量来考察职工薪金的模型如下:一个以性别为虚拟变量来考察职工薪金的模型如下:(8-1)其中其中例如:例如:为职为职工的薪金;工的薪金;为职为职工工工工龄龄;=1代表男性代表男性=0 代表女性代表女性三、虚拟变量的引入三、虚拟变量的引入虚拟变量作为解释变量引入模型有两种基本方式:加法方式和乘法方式。虚
7、拟变量作为解释变量引入模型有两种基本方式:加法方式和乘法方式。1.加法方式加法方式上述职工薪金模型(上述职工薪金模型(8-1)中性别虚拟变量的引入就采取了加法方式,)中性别虚拟变量的引入就采取了加法方式,女女职职工的平均薪金工的平均薪金为为:在在该该模型中,如果仍假定模型中,如果仍假定=0,则,则男职工的平均薪金为:男职工的平均薪金为:从从几何意义几何意义上看上看(图图8-1),图图8-1 男女职工平均薪金示意图男女职工平均薪金示意图假定假定0,则两个函数有相同的斜率,但有不同的截距。则两个函数有相同的斜率,但有不同的截距。这这意味着,男女意味着,男女职职工平均薪金工平均薪金对对工工龄龄的的。
8、变化率是一样的,但两者的平均薪金水平相变化率是一样的,但两者的平均薪金水平相差差可以通可以通过传统过传统的回的回归检验归检验,对对的的统计显统计显著性著性进进行行检验检验,以判断男女,以判断男女职工的平均薪金水平是否有显著差异。职工的平均薪金水平是否有显著差异。例如:例如:在截面数据基础上,考虑在截面数据基础上,考虑个人保健支出对个人收入和教育水平的回归个人保健支出对个人收入和教育水平的回归。教育水平考虑三个层次:高中以下,高中,大学及其以上教育水平考虑三个层次:高中以下,高中,大学及其以上D1=1 高中高中 0 其它其它D2=1 大学及其以上大学及其以上 0 其它其它这时需要引入两个虚拟变量
9、:这时需要引入两个虚拟变量:模型可设定如下:模型可设定如下:(8-2)高中以下:高中以下:E(Yi|Xi,D1i=0,D2i=0)=0+1Xi高中:高中:大学及其以上:大学及其以上:E(Yi|Xi,D1i=1,D2i=0)=(0+2)+1Xi E(Yi|Xi,D1i=0,D2i=1)=(0+3)+1Xi在在=0=0的初始假定下,容易得到高中以下、高中、大学及其以上的初始假定下,容易得到高中以下、高中、大学及其以上教育水平个人平均保健支出的函数:教育水平个人平均保健支出的函数:假定假定,且,且,则则其几何意其几何意义义如如图图8-2所示。所示。图图8-2 不同教育程度人员保健支出示意图不同教育程
10、度人员保健支出示意图还可将还可将多个虚拟变量多个虚拟变量引入模型中以考察多种引入模型中以考察多种“定性定性”因素的影响。因素的影响。例如:例如:在职工薪金模型(在职工薪金模型(8-1)的例子中,再引入学历的虚拟变量)的例子中,再引入学历的虚拟变量D2=1 本科及以上学历本科及以上学历 0 本科以下学历本科以下学历则职工薪金的回归模型可设计如下:则职工薪金的回归模型可设计如下:(8-3)Yi=0+1Xi+2Di+3D2i+i于是,不同性别、不同学历职工的平均薪金分别由下面各式给出:于是,不同性别、不同学历职工的平均薪金分别由下面各式给出:女职工本科以下学历的平均薪金:女职工本科以下学历的平均薪金
11、:男职工本科以下学历的平均薪金:男职工本科以下学历的平均薪金:女职工本科以上学历的平均薪金:女职工本科以上学历的平均薪金:男职工本科以上学历的平均薪金:男职工本科以上学历的平均薪金:E(Yi|Xi,D1i=0,D2i=0)=0+1Xi E(Yi|Xi,D1i=1,D2i=0)=(0+2)+1Xi E(Yi|Xi,D1i=0,D2i=1)=(0+3)+1Xi E(Yi|Xi,D1i=1,D2i=1)=(0+2+3)+1Xi2.乘法方式乘法方式斜率的变化斜率的变化例如:例如:根据消费理论,消费水平根据消费理论,消费水平C主要取决于收入水平主要取决于收入水平X。但在一个较长的。但在一个较长的时期,人
12、们的消费倾向会发生变化,尤其是在自然灾害、战争等反常年时期,人们的消费倾向会发生变化,尤其是在自然灾害、战争等反常年份,消费倾向往往出现变化。这种消费倾向的变化可通过在收入的系数份,消费倾向往往出现变化。这种消费倾向的变化可通过在收入的系数中引入虚拟变量来考察。中引入虚拟变量来考察。设设 Dt=1 正常年份正常年份 0 反常年份反常年份则消费模型可建立如下:则消费模型可建立如下:(8-4)这里,虚拟变量这里,虚拟变量 Dt 以与以与 Xt 相乘的方式引入了模型中,从而可用来相乘的方式引入了模型中,从而可用来考察消费倾向的变化。考察消费倾向的变化。在在E(t)=0的假定下,上述模型所表示的函数可
13、化为的假定下,上述模型所表示的函数可化为:正常年份:正常年份:反常年份:反常年份:图图8-3 不同年份消费倾向示意图不同年份消费倾向示意图假定假定0 0,则其几何图形如图则其几何图形如图8-3所示。所示。如果在模型中如果在模型中同时使用加法和乘法两种方式引入虚拟变量同时使用加法和乘法两种方式引入虚拟变量,则回归线的截距和斜率都会改变。则回归线的截距和斜率都会改变。例如:例如:对于改革开放前后储蓄对于改革开放前后储蓄-收入模型,可设定为收入模型,可设定为(8-5)其中,其中,Y为储蓄,为储蓄,X为收入,为收入,Dt为虚拟变量为虚拟变量 Dt=1 改革开放以后改革开放以后 0 改革开放以前改革开放
14、以前显然在式(显然在式(8-5)中,同时使用加法和乘法两种方式引入了虚拟变量。)中,同时使用加法和乘法两种方式引入了虚拟变量。在在E(t)=0的假定下,上述模型所表示的函数可化为的假定下,上述模型所表示的函数可化为:改革开放以前:改革开放以前:E(Yt|Xt,Dt=0)=0+1Xt改革开放以后:改革开放以后:则则其几何其几何图图形如形如图图8-48-4所示。所示。E(Yt|Xt,Dt=1)=(0+1)+(1+2)Xt假定假定0 0且且0,改革开放以前改革开放以前改革开放以后改革开放以后X XY图图8-4 改革开放前后储蓄函数示意图改革开放前后储蓄函数示意图3 3临界指标的虚拟变量的引入临界指标
15、的虚拟变量的引入在经济发生转折时,可通过建立临界指标的虚拟变量模型来反映。在经济发生转折时,可通过建立临界指标的虚拟变量模型来反映。例如:例如:进口消费品数量进口消费品数量Y主要取决于国民收入主要取决于国民收入X的多少,中国在改革开放前后,的多少,中国在改革开放前后,Y对对X的回归关系明显不同。的回归关系明显不同。这时,可以这时,可以t*=1979为转折期,以为转折期,以1979年的国民收入年的国民收入Xt*为临界值,为临界值,设如下虚拟变量:设如下虚拟变量:1 0Dt=tt*tt*则进口消费品的回归模型可建立如下:则进口消费品的回归模型可建立如下:(8-6)如果用如果用OLS法得到该模型的回
16、归方程为法得到该模型的回归方程为(8-7)则两个时期进口消费品函数分别为则两个时期进口消费品函数分别为当当tt*=1979时时当当tt*=1979时时几何图形如图几何图形如图8-5所示所示 图图8-5 转折期回归示意图转折期回归示意图4数值变量作为虚拟变量引入数值变量作为虚拟变量引入 有些变量虽然是数量变量,即可以获得实际观测值,但在某些特定情有些变量虽然是数量变量,即可以获得实际观测值,但在某些特定情况下把它选取为虚拟变量则是方便的,以虚变量引入计量经济学模型更加况下把它选取为虚拟变量则是方便的,以虚变量引入计量经济学模型更加合理。合理。譬如年龄因素虽然可以用数字计量,但如果将年龄作为资料分
17、组的特譬如年龄因素虽然可以用数字计量,但如果将年龄作为资料分组的特征,则可将年龄选作虚拟变量。征,则可将年龄选作虚拟变量。例如:例如:家庭教育经费支出不仅取决于其收入,而且与年龄因素有关。家庭教育经费支出不仅取决于其收入,而且与年龄因素有关。按年龄划分为三个年龄组:按年龄划分为三个年龄组:618岁年龄组(中小学教育);岁年龄组(中小学教育);1922岁岁年龄组(大学教育);其它年龄组。于是设定虚拟变量年龄组(大学教育);其它年龄组。于是设定虚拟变量D1=1 6-18岁年龄组岁年龄组 0 其它其它D2=1 19-22年龄组年龄组 0 其它其它则家庭教育经费支出模型可设定为则家庭教育经费支出模型可
18、设定为(8-8)其中,其中,Yi是第是第i个家庭的教育经费支出;个家庭的教育经费支出;Xi是第是第i个家庭的收人;个家庭的收人;虚拟变量虚拟变量D1i、D2i分别表示第分别表示第i家庭中是否有家庭中是否有618岁和岁和1922岁的成员。岁的成员。5.5.虚拟变量交互效应分析虚拟变量交互效应分析 当分析解释变量对变量的影响时,大多数情形只是分析了解释变量当分析解释变量对变量的影响时,大多数情形只是分析了解释变量自身变动对被解释变量的影响作用,而没有深入分析解释变量间的相互自身变动对被解释变量的影响作用,而没有深入分析解释变量间的相互作用对被解释变量影响。作用对被解释变量影响。前面讨论的分析两个定
19、性变量对被解释变量影响的虚拟变量模型中,前面讨论的分析两个定性变量对被解释变量影响的虚拟变量模型中,暗含着一个假定:暗含着一个假定:两个定性变量是分别独立地影响被解释变量的两个定性变量是分别独立地影响被解释变量的 但是在实际经济活动中,两个定性变量对被解释变量的影响可能存在但是在实际经济活动中,两个定性变量对被解释变量的影响可能存在一定的交互作用,即一个解释变量的边际效应有时可能要依赖于另一个解一定的交互作用,即一个解释变量的边际效应有时可能要依赖于另一个解释变量。释变量。为描述这种交互作用,可以把两个虚拟变量的乘积以加法形式引入模型。为描述这种交互作用,可以把两个虚拟变量的乘积以加法形式引入
20、模型。考虑下列模型考虑下列模型Yi=0+1D1i+2D2i+Xi+i (8-9)其中,其中,Yi为农副产品生产总收益,为农副产品生产总收益,Xi为农副产品生产投入,为农副产品生产投入,D1i为油菜籽生为油菜籽生产虚拟变量,产虚拟变量,D2i为养蜂生产虚拟变量。这里为养蜂生产虚拟变量。这里D1i=1 发展油菜籽生产发展油菜籽生产 0 其它其它D2i=1 发展养蜂生产发展养蜂生产 0 其它其它例如:例如:显然,显然,(8-9)式描述了是否发展油菜籽生产与是否发展养蜂生产的差异对农式描述了是否发展油菜籽生产与是否发展养蜂生产的差异对农副产品总收益的影响。副产品总收益的影响。虚拟解释变量虚拟解释变量D
21、1i和和D2i是以加法形式引入的,那么暗含着是以加法形式引入的,那么暗含着假定假定:油菜籽生产和养蜂生产是分别独立地影响农副产品生产总收益。油菜籽生产和养蜂生产是分别独立地影响农副产品生产总收益。但是,在发展油菜籽生产时,同时也发展养蜂生产,所取得的农副但是,在发展油菜籽生产时,同时也发展养蜂生产,所取得的农副产品生产总收益可能会高于不发展养蜂生产的情况。即在是否发展油菜产品生产总收益可能会高于不发展养蜂生产的情况。即在是否发展油菜籽生产与养蜂生产的虚拟变量籽生产与养蜂生产的虚拟变量D1i和和D2i之间,很可能存在着一定的交互之间,很可能存在着一定的交互作用,且这种交互影响对被解释变量作用,且
22、这种交互影响对被解释变量农副产品生产总收益会有影响。农副产品生产总收益会有影响。为描述虚拟变量交互作用对被解释变量的效应,在为描述虚拟变量交互作用对被解释变量的效应,在(8-9)式中以式中以加法形式加法形式引入引入两个虚拟解释变量的乘积,即两个虚拟解释变量的乘积,即Yi=0+1D1i+2D2i+3(D1iD2i)+Xi+i (8-10)(1)基础类型:不发展油菜籽生产,也不发展养蜂生产时农副产品生产平均总收益)基础类型:不发展油菜籽生产,也不发展养蜂生产时农副产品生产平均总收益E(Yi|Xi,D1=0,D2=0)=0+Xi (8-11)(2)比较类型:同时发展油菜籽生产和养蜂生产时,农副产品生
23、产平均总收益)比较类型:同时发展油菜籽生产和养蜂生产时,农副产品生产平均总收益E(Yi|Xi,D1=1,D2=1)=0+1+2+3+Xi (8-12)1为是否发展油菜籽生产对农副产品生产总收益的截距差异系数;为是否发展油菜籽生产对农副产品生产总收益的截距差异系数;2为是否发展养蜂生产对农副产品生产总收益的截距差异系数;为是否发展养蜂生产对农副产品生产总收益的截距差异系数;3为同时发展油菜籽生产和养蜂生产时对农副产品生产总收益的交互效应系数。为同时发展油菜籽生产和养蜂生产时对农副产品生产总收益的交互效应系数。0 3组成截距水平。组成截距水平。其中其中 关于交互效应是否存在,可借助于交互效应虚关于
24、交互效应是否存在,可借助于交互效应虚拟解释变量系数的显著性检验来加以判断。拟解释变量系数的显著性检验来加以判断。如果如果t t 检验表明交互效应检验表明交互效应D D1 1i iD D2 2i i在统计意义上在统计意义上显著时,说明交互效应对显著时,说明交互效应对Y Yi i存在显著影响。存在显著影响。四、虚拟变量的设置原则四、虚拟变量的设置原则 每一定性变量所需的虚拟变量个数要比该定性变量的类别数少每一定性变量所需的虚拟变量个数要比该定性变量的类别数少1,即如果定性变量有即如果定性变量有m个类别,则只在模型中引入个类别,则只在模型中引入m-1个虚拟变量。个虚拟变量。例如:例如:已知冷饮的销售
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 王万珺 课件 虚拟 变量 模型 培训资料
限制150内