用MATLAB求解回归分析复习过程.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《用MATLAB求解回归分析复习过程.ppt》由会员分享,可在线阅读,更多相关《用MATLAB求解回归分析复习过程.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、用MATLAB求解回归分析例例1 解:解:1、输入数据:输入数据:x=143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164;X=ones(16,1)x;Y=88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102;2、回归分析及检验:回归分析及检验:b,bint,r,rint,stats=regress(Y,X)b,bint,stats题目3、残差分析,作残差图:、残差分析,作残差图:rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残
2、差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第二个数据可视为异常点.4、预测及作图:、预测及作图:z=b(1)+b(2)*x plot(x,Y,k+,x,z,r)多多项项式式回回归归(一)一元多项式回归(一)一元多项式回归(1)确定多项式系数的命令:p,S=polyfit(x,y,m)(2)一元多项式回归命令:polytool(x,y,m)1、回归:、回归:y=a1xm+a2xm-1+amx+am+12、预测和预测误差估计:、预测和预测误差估计:(1)Y=polyval(p,x)求polyfit所得的回归多项式在x处 的预测值Y;(2)Y,
3、DELTA=polyconf(p,x,S,alpha)求polyfit所得的回归多项式在x处的预测值Y及预测值的显著性为1-alpha的置信区间Y DELTA;alpha缺省时为0.5方法一方法一 直接作二次多项式回归:直接作二次多项式回归:t=1/30:1/30:14/30;s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;p,S=polyfit(t,s,2)得回归模型为:法二法二化为多元线性回归:化为多元线性回归:t=1/30:1/30:14/30;s=11.86
4、 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;T=ones(14,1)t(t.2);b,bint,r,rint,stats=regress(s,T);b,stats得回归模型为:Y=polyconf(p,t,S)plot(t,s,k+,t,Y,r)预测及作图预测及作图(二)多元二项式回归(二)多元二项式回归命令:rstool(x,y,model,alpha)nm矩阵显著性水平(缺省时为0.05)n维列向量例例3 设某商品的需求量与消费者的平均收入、商品价格的统计数 据如下,建立
5、回归模型,预测平均收入为1000、价格为6时 的商品需求量.方法一方法一 直接用多元二项式回归:x1=1000 600 1200 500 300 400 1300 1100 1300 300;x2=5 7 6 6 8 7 5 4 3 9;y=100 75 80 70 50 65 90 100 110 60;x=x1 x2;rstool(x,y,purequadratic)在画面左下方的下拉式菜单中选”all”,则beta、rmse和residuals都传送到Matlab工作区中.在左边图形下方的方框中输入1000,右边图形下方的方框中输入6。则画面左边的“Predicted Y”下方的数据变为
6、88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在Matlab工作区中输入命令:beta,rmse结果为:b=110.5313 0.1464 -26.5709 -0.0001 1.8475 stats=0.9702 40.6656 0.0005方法二方法二将 化为多元线性回归:非线性回非线性回归归(1)确定回归系数的命令:beta,r,J=nlinfit(x,y,model,beta0)(2)非线性回归命令:nlintool(x,y,model,beta0,alpha)1、回归:、回归:残差Jacobian矩阵回归系数的初值是事先用m-文件定义的非线性函数
7、估计出的回归系数输入数据x、y分别为 矩阵和n维列向量,对一元非线性回归,x为n维列向量。2、预测和预测误差估计:、预测和预测误差估计:Y,DELTA=nlpredci(model,x,beta,r,J)求nlinfit 或nlintool所得的回归函数在x处的预测值Y及预测值的显著性为1-alpha的置信区间Y DELTA.例例4 对第一节例2,求解如下:2、输入数据:x=2:16;y=6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76;beta0=8 2;3、求回归系数:beta,r,J
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MATLAB 求解 回归 分析 复习 过程
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内