关于对数函数说课稿.pdf
《关于对数函数说课稿.pdf》由会员分享,可在线阅读,更多相关《关于对数函数说课稿.pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于对数函数说课稿关于对数函数说课稿1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的根底上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的根本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;对数函数这节教材,是在没学习反函数的根底上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的根底知识。2、教学目标确实定及依据依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:(1)理解对
2、数函数的概念、掌握对数函数的图象和性质。(2)培养学生自主学习、综合归纳、数形结合的能力。(3)培养学生用类比方法探索研究数学问题的素养;(4)培养学生对待知识的科学态度、勇于探索和创新的精神。(5)在民主、和谐的教学气氛中,促进师生的情感交流。3、教学重点、难点及关键重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络清楚,才能有利于学生联系旧知识,学习新知识。难点:底数 a 对对数函数的图象和性质的影响;关键:对数函数与指数函数的类比教学由指数函数的图象过渡到对数函数的图象,通过类比分析到达深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学
3、生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正表达出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原那么和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。(2)采用从特殊到一般、从具体到抽象的方法。(3)表达比照联系、数形结合及分类讨论的思想方法。(4)投影仪演示法。在整个过
4、程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的根底上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比拟学习法:学习对数函数,处处与指数函数相对照。(2)探究式学习法:学生通过分析、探索,得出对数函数的定义。(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。(4)反应练习法:检验知识的应用情况,找出未
5、掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。在认真分析教材、教法、学法的根底上,设计教学过程如下:在某细胞分裂过程中,细胞个数 y 是分裂次数 x 的函数 对数函数说课稿,因此,知道 x 的值(输入值是分裂次数)就能求出y 的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数 x 之间的函数关系式。问题一:这是一个怎样的函数模型类型呢?设计意图:复习指数函数问题二:现在我们来研究相反的问题,如果知道了细胞个数y,如何求分裂的次数 x 呢?这将会是我们研究的哪类问题?设计意图:为了引出对数函数问题三:在关系式 对数函数说课稿 每输入一个细胞的个数 y的值,
6、是否一定都能得到唯一一个分裂次数x 的值呢?设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念。1.对数函数的概念:同样,在前面提到的放射性物质,经过的时间x 年与物质剩余量 y 的关系式为 对数函数说课稿,我们也可以把它改为对数式,对数函数说课稿,其中 x 年也可以看作物质剩余量 y 的函数,可见这样的问题在现实生活中还是不少的。设计意图:前面的问题情景的底数为 2,而这个问题情景的底数为 0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。但在习惯上,我们用 x 表示自变量,用 y 表示函数值问题一:你能把以上两个函数表示出
7、来吗?问题二:你能得到此类函数的一般式吗?(在此表达了由特殊到一般的数学思想)问题三:在 对数函数说课稿 中,a 有什么限制条件吗?请结合指数式给以解释。问题四:你能根据指数函数的定义给出对数函数的定义吗?问题五:对数函数说课稿与对数函数说课稿中的x,y 的相同之处是什么?不同之处是什么?问题六:对数函数说课稿与 对数函数说课稿中的 x,y 的相同之处是什么?不同之处是什么?设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域2.对数函数的图象与性质问题:有了研究指数
8、函数的经历,你觉得下面该学习什么内容了?(提示学生进行类比学习)合作探究 1;借助于计算器在同一直角坐标系中画出以下两组函数的图象,并观察各组函数的图象,探求他们之间的关系。(1)对数函数说课稿(2)对数函数说课稿合作探究 2:当 对数函数说课稿 函数 对数函数说课稿 与 对数函数说课稿 的图象之间有什么关系?(在这儿表达从特殊到一般、从具体到抽象的方法)合作探究 3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)问题 1:对数函数 对数函数说课稿(对数函数说课稿)是否具有奇偶性,
9、为什么?问题 2:对数函数 对数函数说课稿(对数函数说课稿),当对数函数说课稿 时,x 取何值,y 对数函数说课稿 0,x 取何值,y对数函数说课稿,当 对数函数说课稿 呢?问题 3:对数式 对数函数说课稿 的值的符号与 a,b 的取值之间有何关系?请用一句简洁的话语表达。知识拓展:函数 对数函数说课稿 称为 对数函数说课稿 的反函数,反之,函数 对数函数说课稿 也称为 对数函数说课稿 的反函数。一般地,如果函数 对数函数说课稿 存在反函数,那么它的反函数记作为 对数函数说课稿1.例题例 1:求以下函数的定义域(1)对数函数说课稿(2)对数函数说课稿(对数函数说课稿)(该题主要考查对数函数 对
10、数函数说课稿 的定义域 对数函数说课稿 这一限制条件根据函数的解析式求得不等式,解对应的不等式。同时通过此题也可让学生总结求函数的定义域应从哪些方面入手)例 2:利用对数函数的性质,比拟以下各组数中两个数的大小:(1)对数函数说课稿,对数函数说课稿(2)对数函数说课稿,对数函数说课稿(3)对数函数说课稿,对数函数说课稿(4)对数函数说课稿,对数函数说课稿,(在这儿要求学生通过回忆指数函数的有关性质比拟大小的步骤和方法,完成前 3 小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比拟数的大小常用的方法)合作探究 4:对数函数说课稿,比拟 m,n 的大小(该题不仅运用了对数函数的图象和性
11、质,还培养了学生数形结合、分类讨论等数学思想。)此题可以从以下几方面加以引导点拨1.此题的难点在哪儿?2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系此题也可以从形的角度来思考。P69 1,2,3由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比拟大小的一般方法和步骤,求定义域应从几方面考虑等)我今天说课的内容是对数函数,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位老师批评指正。1、教材的地位、作用及编写意图对数函数出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许
12、多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;对数函数这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的局部,也是高考的必考内容。2、教学目标确实定及依据。依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。(4)情感目标:在民主、和谐
13、的教学气氛中,促进师生的情感交流。3、教学重点、难点及关键重点:对数函数的概念、图象和性质;难点:利用指数函数的图象和性质得到对数函数的图象和性质;关键:抓住对数函数是指数函数的反函数这一要领。大局部学生数学根底较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地承受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。教给学生方法比教给学生知识更重
14、要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比拟学习法:学习对数函数,处处与指数函数相对照。(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。(4)反应练习法:检验知识的应用情况,找出未掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。1、复习导入(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生答复,并利用课件展示一下指数函数的图象和性质。设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 关于 对数 函数 说课稿
限制150内