2023年小学数学教案设计模板(精选多篇).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023年小学数学教案设计模板(精选多篇).docx》由会员分享,可在线阅读,更多相关《2023年小学数学教案设计模板(精选多篇).docx(107页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年小学数学教案设计模板(精选多篇) 推荐第1篇:初中数学教案设计 篇1:初中数学优秀教学设计 初中数学优秀教学设计 学校: 年级: 九年级,学科 :数学。 篇2:初中数学教学设计模板 学校初中数学教学设计模板 :河北省秦皇岛市卢龙 县木井乡中学篇3:初中数学教学设计大全 1、不等式及其解集教学设计 (湖北省咸宁市咸安区实验中学 章福枝) 一、内容和内容解析 (一)内容 概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集 (二)内容解析 现实生活中存在大量的相等关系,也存在大量的不等关系本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不
2、等式的重要性和必然性,激发他们的求知欲望再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念前面学过方程、方程的解、解方程的概念通过类比教学、不等式、不等式的解、解不等式几个概念不难理解但是对于初学者而言,不等式的解集的理解就有一定的难度因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助 基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上 二、目标和目标解析 (一)教学目标 1理解不等式的概念 2理解不等式的解与解集的意义,理解它
3、们的区别与联系 3了解解不等式的概念 4用数轴来表示简单不等式的解集 (二)目标解析 1达成目标1的标志是:能正确区别不等式、等式以及代数式2达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合 3达成目标3的标志是:理解解不等式是求不等式解集的一个过程 4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右 三、教学问题诊断分析 本节课实质是一节概念课,对于不等式、不
4、等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度 因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集 四、教学支持条件分析 利用多媒体直观演示课前引入问题,激发学生的学习兴趣 五、教学过程设计 (一)动画演示情景激趣 多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢? 设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣 (二)立足实际引出新知 问题一辆匀速行驶的汽车在112
5、0距离a地50km,要在1200之前驶过a地,车速应满足什么条件? 小组讨论,合作交流,然后小组反馈交流结果最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充) 1从时间方面虑:2从行程方面: 50 3从速度方面考虑:x50 设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力 (三)紧扣问题概念辨析 1不等式 设问1:什么是不等式? 设问2:能否举例说明? 由学生自学,老师可作适当补充比如:是不等式 2不等式的解 设问1:什么是不等式的解? 设问2:不等式的解是唯
6、一的吗? 由学生自学再讨论 老师点拨:由x50得x75 说明x任意取一个大于75的数都是不等式3不等式的解集 设问1:什么是不等式的解集? ,50的解 ,50, x50都设问2:不等式的解集与不等式的解有什么区别与联系? 由学生自学后再小组合作交流 老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合 4解不等式 设问1:什么是解不等式? 由学生回答 老师强调:解不等式是一个过程 设计意图:培养学生的自学能力,进一步培养学生合作交流的意识遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识老师再适
7、当点拨,加深理解 (四)数形结合,深化认识 问题1:由上可知,x75既是不等式的解集那么在数轴上如何表示x75呢? 问题2:如果在数轴上表示 x 75,又如何表示呢? 由老师讲解,注意规范性,准确性 老师适当补充:“” 与“”的意义,并强调用“”或“”连接的式子也是不等式比如x 75 就是不等式 设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想 (五)归纳小结,反思提高 教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题 1、什么是不等式? 的解集,也是不等式50 2、什么是不等式的解? 3、什么是不等式的解集,它与不等式的解有什么区别与联系? 4、用数轴表
8、示不等式的解集要注意哪些方面? 设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验 (六)布置作业,课外反馈 教科书第119页第1题,第120页第2,3题 设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整 六、目标检测设计 1填空 下列式子中属于不等式的有_ x +7 x y + 2 = 0 5x + 7 设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念 2用不等式表示 a与5的和小于7 a的与b的3倍 的和是非负数 正方形的边长为xcm,它的周长不超过160cm,求x满足的条件 设计意图:培养学生审题能力,既要正确
9、抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义 推荐第2篇:数学教案设计怎么写 数学教案设计怎么写 一、课前系统部分 (一)教材分析教材分析部分的写作要求: (1)分析课程标准的要求。(2)分析每课教材内容在整个课程标准中和每个模块( 每本教材)中的地位和作用。(3)分析教材内容 (二)学生分析学生分析部分的写作要求: :(1)分析学生已有的认知水平和能力状况。(2)分析学生存在的学习问题。(3)分析学生的学习需要和学习行为。 (三)教学目标教学目标部分的写作要求: (1)确定知识目标。(2)确定能力、方法
10、培养目标及其教学实施策略。(3)确定引导学生情感、态度、价值观目标的教学选点及其教学实施策略。 A、述必须具备的四个基本要素:行为主体主体必须是学生而不是老师, (二) 一课的教学目标设计为: (1)知识与能力: (2)过程与方法:(3)情感态度与价值观 (四)教学重点与难点教学重点与难点部分的写作要求:两个操作要求:(1)确定本堂课的教学重点。(2)确定本堂课的教学难点。 (五)教学方式 (六)教学用具 二、课堂系统部分教学过程 三、课后系统部分教学后记教学后记 推荐第3篇:高一数学教案设计 教案一般包括教学内容、教学目标及教学过程,那么 ,下面是小编给大家整理收集的高一数学教案设计,供大家
11、阅读参考。 高一数学教案设计一:集合的概念 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 1、集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习
12、数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子 这节课主要学习全章的引言和集合的基本概念 学习引
13、言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念 集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明 教学过程: 一、复习引入: 1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2、教材中的章头引言; 3、集合论的创始人康托尔(德国数学家)(见附录); 4、“物以类聚”,“人以群分”; 5、教材中例子(P4) 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (
14、2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合、 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合 记作N, (2)正整数集:非负整数集内排除0的集 记作N*或N+ (3)整
15、数集:全体整数的集合 记作Z , (4)有理数集:全体有理数的集合 记作Q , (5)实数集:全体实数的集合 记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作aA (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没
16、有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如a、b、c、p、q “”的开口方向,不能把aA颠倒过来写 三、练习题: 1、教材P5练习 1、 22、下列各组对象能确定一个集合吗? (1)所有很大的实数 (不确定) (2)好心的人 (不确定) (3)1,2,2,3,4, 5、(有重复) 3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2_ 4、由实数x,x,x, 所组成的集合,最多含( A ) (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素 5、设
17、集合G中的元素是所有形如ab (aZ, bZ)的数,求证: (1) 当xN时, xG; (2) 若xG,yG,则xyG,而 不一定属于集合G 证明(1):在ab (aZ, bZ)中,令a=xN,b=0,则x= x0* = ab G,即xG 证明(2):xG,yG, x= ab (aZ, bZ),y= cd (cZ, dZ) x+y=( ab )+( cd )=(a+c)+(b+d) aZ, bZ,cZ, dZ (a+c) Z, (b+d) Z x+y =(a+c)+(b+d) G,又 不一定都是整数, 不一定属于集合G 四、小结:本节课学习了以下内容: 1、集合的有关概念:(集合、元素、属于、
18、不属于) 2、集合元素的性质:确定性,互异性,无序性 3、常用数集的定义及记法 高一数学教案设计二:函数的概念 【内容与解析】 本节课要学的内容有函数的概念指的是函数的概念及符号 的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定
19、义域和值域。 【教学目标与解析】 1、教学目标 (1)理解函数的概念; (2)了解区间的概念; 2、目标解析 (1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解区间的概念就是指能够体会用区间表示数集的意义和作用; 【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号 的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。 【教学过程】 问题1:一枚炮弹发射后,经过26s落到地面
20、击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是: h130t-5t2.1.1 这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示? 1.2 高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么? 设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。 问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。 问
21、题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。 设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。 问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义? 4.1 在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称? 4.2 在从集合A到集合B的一个函数f:AB中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,xR? 4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么? 【例题】: 例1 求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 小学 数学 教案设计 模板 精选
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内