2023年混凝土裂缝的产生原因及采取的措施.docx
《2023年混凝土裂缝的产生原因及采取的措施.docx》由会员分享,可在线阅读,更多相关《2023年混凝土裂缝的产生原因及采取的措施.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年混凝土裂缝的产生原因及采取的措施 混凝土裂缝的产生原因及采取的措施 摘 要 随着建筑业的发展,混凝土应用极其广泛,特别大体积混凝土一般结构受力复杂,施工技术要求高另外由于构件体积大,水泥的水化热量大易产生塑性裂缝以及混凝土在收缩时产生温度裂缝和使用不合格的材料产生表面产生龟裂,给结构的安全和正常使用带来隐患。混凝土是一种非均质脆性材料,由骨料、水泥石以及其中的气体和水组成。在温度和湿度变化的条件下,硬化并产生体积变形,由于各种材料变形不一致,互相约束而产生初始应力,造成在混凝土内出现微裂缝。这种微细裂缝的分布不规则且不连贯,在荷载或应力作用下,裂缝开始扩展,并逐渐互相贯通,从而出现较
2、大的肉眼可见的裂缝,称为宏观裂缝,即通常所说的裂缝。 钢筋混凝土工程是现代建筑常见的工程项目,在建筑结构中起主要作用。钢筋混凝土结构开裂后,其性能的改变严重影响结构的长期安全和耐久运行,直接影响整个工程的质量与使用寿命。本文分析了混凝土结构裂缝产生的原因,并究其原因提出了预防措施和处理方法。 关键词:混凝土 裂缝 防裂措施 混凝土浇筑 目 录 一、引言.1 1 混凝土的定义. 1 2 混凝土裂缝的定义.1 二、混凝土裂缝产生原因. 2 1混凝土产生裂缝的外因.2 2混凝土产生裂缝的内因.4 三、防止措施.7 1设计措施.7 2原材料控制措施.7 3、施工工艺措施.8 四、结论. 9 致谢. 1
3、0 参考文献. 11 一、引言 1混凝土 在建筑中钢筋、混凝土、模板是主要材料由于建设规模的迅速扩大,高层、超高层、深基础不断的出现混凝土的用量也增加。混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。其中大体积混凝土已大量用于工业与民用建筑中。所谓大体积混凝土是指:结构断面最小尺寸为13m,同时水化热引起混凝土内的最高温度与外界气温之差,预计超过25的混凝土。具有结构厚、体型大、混凝土数量多、工程条件复杂施工技术要求高,体积较大又就地浇筑、成型、养护的特点。 2混凝土裂缝 在大由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂
4、缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。尤其大体积混凝土结构施工中,混凝土裂缝的控制是一个很重要的课题,裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此要对混凝土裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措
5、施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。混凝土的裂缝是指混凝土浇筑过程中,混凝土结构由于内外因素(配比、天气等)的作用,凝固后出现裂缝裂缝宽度大于规范规定的尺寸, 裂缝是混凝土结构物承载能力、耐久性及防水性降低的主要原因。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 二、混凝土裂缝产生原因 实际上,钢筋混凝土结构裂缝的成因复杂而繁多,甚至多种因素互相影响,但每一条裂缝均有其产生的一种或几种原因。钢筋混凝土结构的裂缝
6、产生的原因主要分为三个:(1)由于结构的实际工作状态与设计模型的差异而产生的结构次应力引起的裂缝;(2)由外部荷载引起的裂缝缝隙,按常规计算的各种荷载而引起的;(3)由温度差、收缩、膨胀、不均匀沉降等因素产生的变形应力而引起的裂缝,施工中可以采取措施避免。(4)大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化释放的水化热能产生很大的温度变化和收缩作用,是导致大体积混凝土裂缝的主要原因。也可根据因素的不同分为混凝土自身原因和外部原因两大类。在此,我们就按此分类谈谈常见裂缝的成因。 (一) 混凝土产生裂缝内因 2.1.1 收缩裂缝 收缩裂缝顾名思义其产生原因就是混凝土硬化后水份蒸发体积收缩
7、。从理论上讲,当混凝土在无任何约束而处于自由收缩时,不会产生裂缝,而实际工程中,混凝土总是受到各种约束的,如两端的约束、内部配制钢筋的约束等。由于混凝土收缩过程中受到约束,因而内部产生拉应力,当拉应力大于混凝土的抗拉强度时,就会产生收缩裂缝。一般来讲,混凝土受到的约束越大,其产生的收缩裂缝越多或越宽。由于混凝土体积收缩是因为水份蒸发、干燥导致的,因而收缩裂缝也通常称为干缩裂缝。因为混凝土中的水份蒸发通常情况下主要在混凝土浇捣后的硬化过程中和硬化早期一个月左右时间内完成的,尤其在硬化过程中水份蒸发速率相对较大;因而,相应地收缩裂缝出现的时间一般在混凝土浇捣后的硬化过程中和硬化早期一个月左右的时间
8、内,通常情况下,混凝土拆模时收缩裂缝就已基本形成,有时只是因为裂缝太细、太窄不易被发觉,之后随着混凝土水份的进一步蒸发,其收缩裂缝逐渐变粗,或者由于产生渗漏等情况,才被发觉。一般情况下,几个月以后,混凝土体内多余水份蒸发已基本完成,混凝土内湿度与环境湿度基本趋于一致,因而收缩裂缝的宽度发展也趋于停止,处于相对稳定状况。当然,之后还将随着环境湿度和温度的变化而略有变化,当环境湿度变大时,混凝土将吸取空气中的水份,而收缩裂缝变窄些,反之当环境湿度变小时,混凝土收缩裂缝将变宽些。另外,还随着环境温度变化,混凝土也将产生热胀冷缩现象, 因而收缩裂缝也会随着环境温度的升高而变窄些,反之,随着环境温度的降
9、低而变宽些。这种变化可分为:早期体积变化、硬化过程的体积变化、硬化后的体积变化。 如果混凝土的体积变化受到束约,且混凝土自身抵抗这种变形的抗拉性能过低时,就会产生开裂。可以说,混凝土自身收缩是其固有的物理特性,而由此类原因产生的收缩裂缝,占常见裂缝的绝大多数。 2.1.1.1 干燥收缩 由于水泥混凝土的脱水干燥,其长度或体积会有所减少,称干燥收缩。混凝土的干燥收缩主要是由于水泥石的干缩引起的;水泥石的收缩比混凝土大,约为普通混凝土的1d的龄期为基准,相对湿度70 %左右的环境下,最终的收缩变形为左右。影响其干缩变形的主要原因可分为内外两方面原因: 内因涉及单方水泥用量、用水量、水灰比、骨料(品
10、种和单方用量) 以及构件大小(厚度) ;外因则涉及环境相对湿度、干燥时间等。 2.1.1.2 混凝土自身收缩 所谓自身收缩,是指在外部无水分供应时,水泥浆的骨架形成后,伴随着水泥水化反应的逐步完成,水泥浆中的水被消耗,会形成弯液面而发生负压,出现的收缩现象。 2.1.1.3 水化收缩 水泥和水反应后生成物体积,会比反应前水泥和水的体积减小;水化反应的同时,绝对体积也会减少,即产生水化收缩。其产生的机理为: (1)大体积混凝土结构的截面尺寸较大,在施工过程中,由水泥水化过程中释放出大量水化热量,由于混凝土体积大,热量散发不易,造成温升较大,从而导致混凝土体积增大。当这种变形不受约束时,混凝土结构
11、内部不会产生应力。但实际上这种变形肯定会受到约束,约束有两种。一是混凝土与外部环境温度差异引起的约束;另一种是由于内部的条件而不同产生的约束,以上两种约束产生的应力为温度应力。 (2)其次,湿度变化引起的混凝土内部各单元体之间相互约束,产生的应力为干缩应力。因为湿度传导率远小于热度传导率(约为1/1600),所以,它主要 产生在混凝土表面附近:另外,混凝土自身体积变形不能自由伸缩所产生的应力,称为自身体积变形应力;还有地基不均匀沉降、模板走样也会产生相应的变形应力。在以上非结构荷载的作用下所产生的应力中,主要是温度应力和变形应力。对于大体积混凝土结构施工中,当混凝土浇筑体的边界无约束时(如底、
12、顶板顶面),在早期水化热的温度迅速升高阶段,由于混凝土内、外散热条件不同,形成温度梯度,表面受拉,内部受压。当拉应力超过混凝土抗拉强度时,混凝土表面就产生裂缝。在混凝土的降温阶段,混凝土的温差引起的变形加上混凝土的体积收缩变形,受到地基和结构边界条件的约束时,在浇筑体的中央断面产生了内部拉应力,当该拉应力超过混凝土抗拉强度时,混凝土整个截面就产生了贯穿裂缝。 (3)现浇钢筋混凝土结构梁、板产生裂缝的原因,综合归纳起来可以分为两大类:一是由于设计失误、实际施工不当等原因导致的结构性裂缝;二是由于混凝土本身的收缩和温差作用所产生的非结构性裂缝。有关资料统计及大量的工程实践表明,一般工程中结构性裂缝
13、约占20,大部分为收缩和温差裂缝约占80,这些非结构性裂缝可以通过设计和施工阶段采取相应的技术措施进行预防,从而将其控制在现行规范所允许的范围之内。从大量的工程实践中我们可以发现,建筑结构中混凝土的收缩和温差裂缝所出现的位置与构件部位和形状关系的规律基本相同或类似。 2.1.1.4 干湿引发的体积变化 硬化后混凝土结构虽然是稳定的,但在水中或者高湿度的地方,会由于吸水而产生膨胀,称之为润湿膨胀。影响其膨胀率的主要原因有:混凝土中单方用水量、水泥用量、水灰比、骨料以及构件的大小(厚度)、混凝土浸水前的干燥状态以及水中存放期限等。 2.1.2 温度应力裂缝 温度应力裂缝产生的主要原因是由于混凝土浇
14、筑后,聚积在内部的水泥水化热不易散发,造成混凝土的内部温度升高,而混凝土表面散热较快,这样形成较大的内外温差,使混凝土内部产生压应力,表面产生拉应力。如果在混凝土表面附近存在较大的温度梯度,就会引起较大的表面拉应力,此时混凝土的龄期很短,抗拉强度很低,如果温差产生的表面拉应力,超过此时的混凝土极限抗拉强度,就会在混凝土表面产生表面裂缝。这种裂缝一般产生很早,多呈不规则状态,深 度较浅,属表面性质。表面裂缝易产生应力集中,能促使裂缝进一步开展。 其形成过程可以分为以下三个阶段: (1)初期:自浇筑混凝土开始至水泥放热基本结束,一般约需30天。这个阶段有两个特征,一是混凝土弹性模量的急剧变化,二是
15、水泥放出大量的水化热。由于弹性模量的变化,这一时期在混凝土内形成了残余应力。 (2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个过程时间中,温度应力主要是由于混凝土的冷却和外界气温的变化所引起,这些应力与早期形成的残余应力相叠加,在这个期间混凝土的弹性模量变化不大。 (3)后期:混凝土完全冷却以后的运转时期。温度应力主要是由外界气温变化所引起的,这些应力与前两种的残余应力相叠加。 (4)根据温度应力引起的原因可分为两类:一是自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力的。例如,桥梁墩身、结构尺寸相对较大,混凝
16、土冷却时表面温度低,内部温度高,在结构表面出现拉应力,在结构中间出现压应力。二是约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。这两种温度应力往往与混凝土的干缩所引起的应力相互共同作用。要根据已知的温度准确分析出温度应力的分布、大小是一项比较烦琐的工作。在大多数的情况下,是需要依靠模型试验或数值计算。混凝土结构的徐变使温度应力有相当大的松弛,计算温度应力时,必须考虑徐变产生的影响,具体计算这里就不再细述。 2.1.3 塑性收缩裂缝 塑性收缩裂缝产生的主要原因是混凝土浇筑后,在塑性状态时表面水分蒸发过快造成的。这类裂缝多在表面出现,形状不规则
17、、长短宽窄不 一、呈龟裂状,深度一般不超过50mm。产生的原因主要是混凝土浇注后小时左右表面没有被覆盖,特别是平板结构在炎热或大风天气混凝土表面水分蒸发过快,或者是基础、模板吸水过快,以及混凝土本身的水化热高等原因造成混凝土产生急剧收缩,此时混凝土强度趋近于零,不能抵抗这种变形应力而导致开裂。混凝土中蒸发和吸收水分的速度越快,塑性收缩裂缝越容易产生,而商品混凝土由于为了满足可泵性、流动性、出机时混凝土的塌落度和砂率比普通混凝土大很多,早期强度低所以其水分特别容易散失,表面容易形成裂缝。 2.1.4 塑性沉降裂缝 塑性沉降裂缝产生的主要原因是由于混凝土骨料沉降时受到阻碍(如钢筋、模板)而产生的。
18、这种裂缝大多出现在混凝土浇注后0.5小时至小时之间,混凝土尚处在塑性状态,混凝土表面消失水光时立即产生,沿着梁及板上面钢筋的走向出现,主要是混凝土塌落度大、沉陷过高所致。另外在施工过程中如果模板绑扎的不好、模板沉陷、移动时也会出现此类裂缝。 (二) 混凝土产生裂缝的外因 2.2.1 化学反应影响产生的裂缝 碱骨料反应裂缝和钢筋锈蚀引起的裂缝是钢筋混凝土结构中最常见的由于化学反应而引起的裂缝。混凝土拌和后会产生一些碱性离子这些离子与某些活性骨料产生化学反应并吸收周围环境中的水而体积增大,造成混凝土酥松、膨胀开裂。这种裂缝一般出现在混凝土结构使用期间一旦出现很难补救,因此应在施工中采取有效措越进行
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 混凝土 裂缝 产生 原因 采取 措施
限制150内