高等数学(下)无穷级数.ppt
《高等数学(下)无穷级数.ppt》由会员分享,可在线阅读,更多相关《高等数学(下)无穷级数.ppt(100页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、无穷级数 无穷级数无穷级数数项级数数项级数幂级数幂级数傅氏级数(数一)傅氏级数(数一)第十一章常数项级数的概念和性质 一、常数项级数的概念一、常数项级数的概念 二、无穷级数的基本性质二、无穷级数的基本性质 三、级数收敛的必要条件三、级数收敛的必要条件 第一节 第十一章 一、常数项级数的概念一、常数项级数的概念 引例引例 用圆内接正多边形面积逼近圆面积.依次作圆内接正边形,这个和逼近于圆的面积 A.设 a0 表示即内接正三角形面积,ak 表示边数增加时增加的面积,则圆内接正定义定义:给定一个数列将各项依即称上式为无穷级数,其中第 n 项叫做级数的一般项,级数的前 n 项和称为级数的部分和部分和.
2、次相加,简记为当级数收敛时,称差值为级数的余项余项.则称无穷级数发散发散.显然收敛收敛,则称无穷级数并称 S 为级数的和和,记作例例1.讨论等比级数 (又称几何级数)(q 称为公比)的敛散性.解解:1)若从而因此级数收敛,从而则部分和因此级数发散.其和为2).若因此级数发散;因此n 为奇数n 为偶数从而综合 1)、2)可知,时,等比级数收敛;时,等比级数发散.则级数成为不存在,因此级数发散.例例2.判别下列级数的敛散性:解解:(1)所以级数(1)发散;技巧技巧:利用“拆项相消拆项相消”求和(2)所以级数(2)收敛,其和为 1.技巧技巧:利用“拆项相消拆项相消”求和二、无穷级数的基本性质二、无穷
3、级数的基本性质 性质性质1.若级数收敛于 S,则各项乘以常数 c 所得级数也收敛,说明说明:级数各项乘以非零常数后其敛散性不变.即其和为 c S.性质性质2.设有两个收敛级数则级数也收敛,其和为说明说明:(2)若两级数中一个收敛一个发散,则必发散.但若二级数都发散,不一定发散.例如例如,(1)性质2 表明收敛级数可逐项相加或减.性质性质3.在级数前面加上或去掉有限项有限项,不会影响级数的敛散性.性质性质4.收敛级数加括弧后所成的级数仍收敛于原级数的和.推论推论:若加括弧后的级数发散,则原级数必发散.注意注意:收敛级数去括弧后所成的级数不一定收敛.但发散.例如,三、级数收敛的必要条件三、级数收敛
4、的必要条件 性质5、设收敛级数则必有可见:若级数的一般项不趋于若级数的一般项不趋于0,则级数必发散则级数必发散.例如例如,其一般项为不趋于0,因此这个级数发散.注意注意:并非级数收敛的充分条件.例如例如,调和级数虽然但此级数发散.事实上事实上,假设调和级数收敛于 S,则但矛盾!所以假设不真.二、交错级数及其审敛法二、交错级数及其审敛法 三、绝对收敛与条件收敛三、绝对收敛与条件收敛 第二节第二节一、正项级数及其审敛法一、正项级数及其审敛法常数项级数的审敛法常数项级数的审敛法 第十一章 一、正项级数及其审敛法一、正项级数及其审敛法若定理定理 1.正项级数收敛部分和序列有界.则称为正项级数.定理定理
5、2(比较审敛法比较审敛法)设且存在对一切有(1)若强级数则弱级数(2)若弱级数则强级数则有收敛,也收敛;发散,也发散.是两个正项级数,(常数 k 0),例例1.讨论 p 级数(常数 p 0)的敛散性.解解:1)若因为对一切而调和级数由比较审敛法可知 p 级数发散.发散,因为当故考虑强级数的部分和故强级数收敛,由比较审敛法知 p 级数收敛.时,2)若调和级数与 p 级数是两个常用的比较级数.若存在对一切证明级数发散.证证:因为而级数发散根据比较审敛法可知,所给级数发散.例例2.2.定理定理3.(比较审敛法的极限形式)则有两个级数同时收敛或发散;(2)当 l=0(3)当 l=设两正项级数满足(1)
6、当 0 l 时,是两个正项级数正项级数,(1)当 时,两个级数同时收敛或发散;特别取可得如下结论:对正项级数(2)当 且 收敛时,(3)当 且 发散时,也收敛;也发散.的敛散性.例例3.判别级数的敛散性.解解:根据比较审敛法的极限形式知例例4.判别级数解解:根据比较审敛法的极限形式知定理定理4.比值审敛法(Dalembert 判别法)设 为正项级数,且则(1)当(2)当时,级数收敛;或时,级数发散.说明说明:当时,级数可能收敛也可能发散.例如例如,p 级数但级数收敛;级数发散.例例5.讨论级数的敛散性.解解:根据定理4可知:级数收敛;级数发散;例例6.讨论级数的敛散性.定理定理5.根值审敛法(
7、Cauchy判别法)设 为正项级则数,且时,级数可能收敛也可能发散.例如,p 级数 说明说明:但级数收敛;级数发散.例例7.讨论级数的敛散性.例例8.讨论级数的敛散性.二二、交错级数及其审敛法、交错级数及其审敛法 则各项符号正负相间的级数称为交错级数交错级数.定理定理6.(Leibnitz 判别法)若交错级数满足条件:则级数收敛,且其和 其余项满足收敛收敛用Leibnitz 判别法判别法判别下列级数的敛散性:收敛上述级数各项取绝对值后所成的级数是否收敛?发散收敛收敛三、绝对收敛与条件收敛三、绝对收敛与条件收敛 定义定义:对任意项级数若若原级数收敛,但取绝对值以后的级数发散,则称原级收敛,数为条
8、件收敛.均为绝对收敛.例如例如:绝对收敛;则称原级数条件收敛.定理定理7.绝对收敛的级数一定收敛.说明:上述逆定理不一定成立。即发散发散例例9.证明下列级数绝对收敛:证证:(1)而收敛,收敛因此绝对收敛.(2)令因此收敛,绝对收敛.内容小结内容小结1.利用部分和数列的极限判别级数的敛散性2.利用正项级数审敛法必要条件不满足发 散满足比值审敛法根值审敛法收 敛发 散不定 比较审敛法用它法判别积分判别法部分和极限3.任意项级数审敛法为收敛级数Leibniz判别法:则交错级数收敛概念:绝对收敛条件收敛例1、(06,一,三)若则级数()A、B、C、D、例2、(05,三)设若则下列结论正确的是()A、B
9、、C、D、第三节一、函数项级数的概念一、函数项级数的概念 二、幂级数及其收敛性二、幂级数及其收敛性 三、幂级数的运算三、幂级数的运算 幂级数 第十一章 一、一、函数项级数的概念函数项级数的概念设为定义在区间 I 上的函数项级数函数项级数.对若常数项级数敛点敛点,所有收敛点的全体称为其收敛域收敛域;若常数项级数为定义在区间 I 上的函数,称收敛,发散,所有为其收收 为其发散点发散点,发散点的全体称为其发散域发散域.为级数的和函数和函数,并写成若用令余项则在收敛域上有表示函数项级数前 n 项的和,即在收敛域上,函数项级数的和是 x 的函数 称它例如例如,等比级数它的收敛域是它的发散域是或写作又如又
10、如,级数级数发散;所以级数的收敛域仅为有和函数 二、幂级数及其收敛性二、幂级数及其收敛性 形如的函数项级数称为幂级数幂级数,其中数列下面着重讨论例如,幂级数为幂级数的系数系数.即是此种情形.的情形,即称 发 散发 散收 敛收敛 发散定理定理 1.(Abel定理定理)若幂级数则对满足不等式的一切 x 幂级数都绝对收敛.反之,若当的一切 x,该幂级数也发散.时该幂级数发散,则对满足不等式幂级数在(,+)收敛;由Abel 定理可以看出,中心的区间.用R 表示幂级数收敛与发散的分界点,的收敛域是以原点为则R=0 时,幂级数仅在 x=0 收敛;R=时,幂级数在(R,R)收敛;(R,R)加上收敛的端点称为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 无穷 级数
限制150内