《《导数在研究函数中的应用-极值》.ppt》由会员分享,可在线阅读,更多相关《《导数在研究函数中的应用-极值》.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.3.2导数在研究函数中的应用-极值教学目标教学目标(1)知识目标:能探索并应用函数的极值与导数的关系求函数极值,能由导数信息判断函数极值的情况。(2)能力目标:培养学生的观察能力、归纳能力,增强数形结合的思维意识。(3)情感目标:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的良好习惯。教学重点:教学重点:探索并应用函数极值与导数的关系求函数极值。教学难点:教学难点:利用导数信息判断函数极值的情况。教学方法:教学方法:发现式、启发式设函数设函数y=f(x)在某个区间内有导数,在某个区间内有导数,如果在这个区间内如果在这个区间内y0,那么,那么y=f(x)为这为这
2、个区间内的个区间内的增函数增函数;如果在这个区间内;如果在这个区间内y0增函数增函数y0,求得其解集,求得其解集,再根据解集写出单调再根据解集写出单调递增递增区间区间求解不等式求解不等式f(x)0,求得其解集,求得其解集,再根据解集写出单调再根据解集写出单调递减递减区间区间注、注、单调区间不单调区间不以以“并集并集”出现。出现。练习练习2、确定确定y=2x3-6x2+7的单调区间的单调区间练习练习1、讨论讨论f(x)=ax2+bx+c(a0)的单的单调区间调区间一般地,设函数一般地,设函数y=f(x)在在x=x0及其及其附近有定义,如果附近有定义,如果f(x0)的值比的值比x0附近所附近所有各
3、点的函数值都大,我们就说有各点的函数值都大,我们就说f(x0)是函数的一个是函数的一个极大值极大值,如果,如果f(x0)的值的值比比x0附近所有各点的函数值都小,我们附近所有各点的函数值都小,我们就说就说f(x0)是函数的一个是函数的一个极小值极小值。极大值与极小值极大值与极小值统称统称为极值为极值.函数极值函数极值的定义的定义如如果果x0是是f(x)=0的的一一个个根根,并并且且在在x0的的左左侧侧附附近近f(x)0,那么是,那么是f(x0)函数函数f(x)的一个的一个极小值极小值.导数的应用二、导数的应用二、求函数的极值求函数的极值如果如果x0是是f(x)=0的一个根,并且在的一个根,并且
4、在x0的的左侧附近左侧附近f(x)0,在,在x0右侧附近右侧附近f(x)0(B)1a1(D)0a16、当、当x(-2,1)时,时,f(x)=2x3+3x2-12x+1是是()(A)单调递增函数单调递增函数(B)单调递减函数单调递减函数(C)部份单调增,部分单调减部份单调增,部分单调减(D)单调性不能确定单调性不能确定7、如如果果质质点点M的的运运动动规规律律为为S=2t2-1,则则在在一一小小段段时时间间2,2+t中中相相应应的的平平均均速速度度等等于于()(A)8+2t(B)4+2t(C)7+2t(D)8+2t8、如如果果质质点点A按按规规律律S=2t3运运动动,则则在在t=3秒秒时的瞬时速
5、度为时的瞬时速度为()(A)6(B)18(C)54(D)81 9、已已知知y=f(x)=2x3-3x2+a的的极极大大值值为为6,那么那么a等于等于()(A)6(B)0(C)5(D)110、函数、函数y=x3-3x的极大值为的极大值为()(A)0(B)2(C)+3(D)1例例1、若两曲线若两曲线y=3x2+ax与与y=x2-ax+1在在点点x=1处的切线互相平行,求处的切线互相平行,求a的值的值.分析分析原题意等价于函数原题意等价于函数y=3x2+ax与与y=x2-ax+1在在x=1的导数相等,的导数相等,即:即:6+a=2-a例例2、已知抛物线已知抛物线y=ax2+bx+c通过点通过点P(1
6、,1),且在点,且在点Q(2,-1)处与直线处与直线y=x-3相切,求实相切,求实数数a、b、c的值的值.分分析析由由条条件件知知:y=ax2+bx+c在在点点Q(2,-1)处的导数为处的导数为1,于是,于是4a+b=1又又点点P(1,1)、Q(2,-1)在在曲曲线线y=ax2+bx+c上,从而上,从而a+b+c=1且且4a+2b+c=-1 例例3已知已知P为抛物线为抛物线y=x2上任意一点,则当点上任意一点,则当点P到直线到直线x+y+2=0的距离最小时,求点的距离最小时,求点P到抛到抛物线准线的距离物线准线的距离 分析分析点点P到直线的距离最小时,抛物线在点到直线的距离最小时,抛物线在点P
7、处的切线斜率为处的切线斜率为-1,即函数在点,即函数在点P处的导数处的导数为为-1,令,令P(a,b),于是有:于是有:2a=-1.例例4设设f(x)=ax3+x恰有三个单调区间,试确定恰有三个单调区间,试确定实数实数a的取值范围,并求出这三个单调区间的取值范围,并求出这三个单调区间.思思考考、已已知知函函数数y=x2-2(m-1)x+2在在区区间间2,6内单调递增,求内单调递增,求m的取值范围。的取值范围。(1)若若曲曲线线y=x3在在点点处处的的切切线线的的斜斜率率等等于于,则点的坐标为,则点的坐标为()(A)(2,8)(B)(-2,-8)(C)(-1,-1)或或(1,1)(D)(-1/2,-1/8)(2)若若曲曲线线y=x5/5上上一一点点处处的的切切线线与与直直线线y=3-x垂直,则此切线方程为垂直,则此切线方程为()(A)5x+5y-4=0(B)5x-5y-4=0(C)5x-5y+4=0(D)以上皆非以上皆非(3)曲线曲线y=x3/3-x2+5在点处的切线的倾角在点处的切线的倾角为为3/4,则的坐标为,则的坐标为.
限制150内