《概率论与数理统计》经典课件 概率论1.ppt
《《概率论与数理统计》经典课件 概率论1.ppt》由会员分享,可在线阅读,更多相关《《概率论与数理统计》经典课件 概率论1.ppt(90页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、概率论与数理统计 12/15/20221概率论与数理统计是研究随机现象数量规律的一门学科。2u第一章 概率论的基本概念 1.1 随机试验 1.2 样本空间 1.3 概率和频率 1.4 等可能概型(古典概型)1.5 条件概率 1.6 独立性u第二章 随机变量及其分布 2.1 随机变量 2.2 离散型随机变量及其分布 2.3 随机变量的分布函数 2.4 连续型随机变量及其概率密度 2.5 随机变量的函数的分布u第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布 3.4 相互独立的随机变量 3.5 两个随机变量的函数的分布 3u第四章 随机变量的数字特征4.1 数
2、学期望4.2 方差4.3 协方差及相关系数4.4 矩、协方差矩阵u第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 u第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布4u第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 u第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验u第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线
3、性回归 9.4 多元线性回归5u第十章 随机过程及其统计描述10.1 随机过程的概念10.2 随机过程的统计描述10.3 泊松过程及维纳过程u第十一章 马尔可夫链11.1 马尔可夫过程及其概率分布11.2 多步转移概率的确定11.3 遍历性u第十二章 平稳随机过程12.1 平稳随机过程的概念12.2 各态历经性12.3 相关函数的性质12.4 平稳过程的功率谱密度6 概 率 论7关键词:样本空间 随机事件频率和概率条件概率事件的独立性第一章 概率论的基本概念81 随机试验确定性现象:结果确定不确定性现象:结果不确定确定性现象不确定性现象确定不确定不确定自然界与社会生活中的两类现象例:向上抛出的
4、物体会掉落到地上 明天天气状况 买了彩票会中奖9概率统计中研究的对象:随机现象的数量规律 对随机现象的观察、记录、试验统称为随机试验。随机试验。它具有以下特性:1.可以在相同条件下重复进行2.事先知道可能出现的结果3.进行试验前并不知道哪个试验结果会发生 例:抛一枚硬币,观察试验结果;对某路公交车某停靠站登记下车人数;对某批电子产品测试其输入电压;对听课人数进行一次登记;102 样本空间随机事件(一一)样本空间样本空间 定义:随机试验E的所有结果构成的集合称为E的 样本空间样本空间,记为S=e,称S中的元素e为基本事件基本事件或样本点样本点S=0,1,2,;S=正面,反面;S=(x,y)|T0
5、yxT1;S=x|axb 记录一城市一日中发生交通事故次数 例:一枚硬币抛一次记录某地一昼夜最高温度x,最低温度y 记录一批产品的寿命x11(二)随机事件随机事件 一般我们称S的子集A为E的随机事件随机事件A,当且仅当A所包含的一个样本点发生称事件A发生。S0,1,2,;记 A至少有10人候车10,11,12,S,A为随机事件,A可能发生,也可能不发生。例:观察98路公交车师大大站候车人数,如果将S亦视作事件,则每次试验S总是发生,故又称S为必然事件必然事件。为方便起见,记为不可能事件不可能事件,不包含任何样本点。12(三)事件的关系及运算事件的关系及运算v事件的关系(包含、相等)v例:记A=
6、明天天晴,B=明天无雨记A=至少有10人候车,B=至少有5人候车一枚硬币抛两次,A=第一次是正面,B=至少有一次正面 SAB13v 事件的运算SBASABSBA A与B的和事件,记为 A与B的积事件,记为当AB=AB=时,称事件A A与B B不相容的,或互斥的。14“和”、“交”关系式SABS 例:设A A=甲来听课,B B=乙来听课 ,则:甲、乙至少有一人来甲、乙都来甲、乙都不来甲、乙至少有一人不来153 频率与概率(一)频率 定义:记 其中 A发生的次数(频数);n总试验次 数。称 为A在这n次试验中发生的频率频率。例:中国国家足球队,“冲击亚洲”共进行了n次,其中成功了一次,则在这n次试
7、验中“冲击亚洲”这事件发生的频率为某人一共听了17次“概率统计”课,其中有15次迟到,记A=听课迟到,则#频率 反映了事件A发生的频繁程度。16试验序号n=5n =50n=500nHfn(H)nHfn(H)nHfn(H)1234567891023151242330.40.60.21.00.20.40.80.40.60.6222521252421182427310.440.500.420.500.480.420.360.480.540.622512492562532512462442582622470.5020.4980.5120.5060.5020.4920.4880.5160.5240.49
8、4表表 1 1 例:抛硬币出现的正面的频率实验者nnHfn(H)德摩根204810610.5181蒲 丰404020480.5069K皮尔逊1200060190.5016K皮尔逊24000120120.5005表表 2 218*频率的性质:且 随n的增大渐趋稳定,记稳定值为p19(二)概率 定义1:的稳定值p定义为A的概率,记为P(A)=p 定义2:将概率视为测度,且满足:称P(A)为事件A的概率概率。20性质:214 等可能概型(古典概型)定义:若试验E满足:1.S中样本点有限(有限性)2.出现每一样本点的概率相等(等可能性)称这种试验为等可能概型等可能概型(或古典概型或古典概型)。22v例
9、1:一袋中有8个球,编号为18,其中13 号为红球,48号为黄球,设摸到每一 球的可能性相等,从中随机摸一球,记A=摸到红球,求P(A)解:S=1,2,8 A=1,2,3 23例2:从上例的袋中不放回的摸两球,记A=恰是一红一黄,求P(A)解:(注:当Lm或L0,i=1,2,n;则称:为全概率公式全概率公式B1B2BnSA证明:证明:定理:接上定理条件,称此式为BayesBayes公式。公式。36*全概率公式可由以下框图表示:设 P(Bj)=pj,P(A|Bj)=qj,j=1,2,n易知:SP1P2Pn.B2B1Bn.q2q1qnA37例:一单位有甲、乙两人,已知甲近期出差的概率为80%,若甲
10、出差,则乙出差的概率为20%;若甲不出差,则乙出差的概率为90%。(1)求近期乙出差的概率;(2)若已知乙近期出差在外,求甲出差的概率。Bayes公式全概率公式解:设A=甲出差,B=乙出差38 例:根据以往的临床记录,某种诊断癌症的试验具有5%的假阳性及5%的假阴性:若设A=试验反应是阳性,C=被诊断患有癌症 则有:已知某一群体P(C)=0.005,问这种方法能否用于普查?若P(C)较大,不妨设P(C)=0.8推出P(C|A)=0.987说明这种试验方法可在医院用解:考察P(C|A)的值若用于普查,100个阳性病人中被诊断患有癌症的大约有8.7个,所以不宜用于普查。396 独立性v 例:有10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论与数理统计 概率论与数理统计经典课件 概率论1 概率论 数理统计 经典 课件
限制150内