自适应控制课件__ok.ppt
《自适应控制课件__ok.ppt》由会员分享,可在线阅读,更多相关《自适应控制课件__ok.ppt(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 自适应控制自适应控制自适应控制概述自适应控制概述 基本概念、基本概念、解决的问题、解决的问题、分类及发展分类及发展模型参考自适应控制模型参考自适应控制 系统描述系统描述 可调系统的结构可调系统的结构 自适应控制律自适应控制律自校正控制自校正控制 最小方差自校正控制器最小方差自校正控制器 极点配置自校正控制器极点配置自校正控制器 自校正自校正PIDPID控制控制2.1 2.1 自适应控制概述自适应控制概述 2.1.1 2.1.1 自适应控制系统的功能及特点自适应控制系统的功能及特点研究对象:具有不确定性的系统研究对象:具有不确定性的系统 被控对象及其环境的数学模型不是完全确定的被控对象及其环境
2、的数学模型不是完全确定的 自适应控制器自适应控制器:通过:通过及时修正自己的特性以适应对象和扰动的动态特性变化及时修正自己的特性以适应对象和扰动的动态特性变化,使整个控制系统始终获得满意的性能。使整个控制系统始终获得满意的性能。生物能够通过自觉调整自身参数改变自己的习性,以适应新的环境特性生物能够通过自觉调整自身参数改变自己的习性,以适应新的环境特性 自适应控制的特点:自适应控制的特点:研究具有不确定性的对象或难以确知的对象研究具有不确定性的对象或难以确知的对象 能消除系统结构扰动引起的系统误差能消除系统结构扰动引起的系统误差 对数学模型的依赖很小,仅需要较少的验前知识对数学模型的依赖很小,仅
3、需要较少的验前知识 自适应控制是较为复杂的反馈控制自适应控制是较为复杂的反馈控制 2.1 2.1 自适应控制概述自适应控制概述 2.1.2 2.1.2 自适应控制系统的分类自适应控制系统的分类(1 1)前馈自适应控制)前馈自适应控制前馈自适应控制结构图前馈自适应控制结构图 与前馈反馈复合控制系统的结构比较类似与前馈反馈复合控制系统的结构比较类似 不同在于:增加了自适应机构,并且控制器可调不同在于:增加了自适应机构,并且控制器可调 借助于借助于过程扰动信号过程扰动信号的测量,通过的测量,通过自适应机构自适应机构来来改变控制器的状态改变控制器的状态,从而达到改,从而达到改变系统特性的目的。变系统特
4、性的目的。当扰动不可测时,当扰动不可测时,前馈自适应控制系统的前馈自适应控制系统的应用就会受到严重的限应用就会受到严重的限制。制。2.1 2.1 自适应控制概述自适应控制概述 2.1.2 2.1.2 自适应控制系统的分类自适应控制系统的分类(2 2)反馈自适应控制)反馈自适应控制反馈自适应控制结构图反馈自适应控制结构图 根据根据系统内部可测信息系统内部可测信息的变化,来改变控制器的结构或参数,以达到提高控制的变化,来改变控制器的结构或参数,以达到提高控制质量的目的质量的目的.除原有的反馈回路之外,反馈自适应控制系统中新增加的自适应机构形成了另一除原有的反馈回路之外,反馈自适应控制系统中新增加的
5、自适应机构形成了另一个反馈回路个反馈回路.2.1 2.1 自适应控制概述自适应控制概述 2.1.2 2.1.2 自适应控制系统的分类自适应控制系统的分类(3 3)模型参考自适应控制模型参考自适应控制(MRAC)在参考模型始终具有期望的闭环性能的前提下,使系统在运行过程中,力求保持在参考模型始终具有期望的闭环性能的前提下,使系统在运行过程中,力求保持被控过程的响应特性与参考模型的动态性能一致。被控过程的响应特性与参考模型的动态性能一致。表达了期望的闭环性能表达了期望的闭环性能结构或参数结构或参数 根据系统广义误差根据系统广义误差 ,按照按照一定的规律改变可调机构的结构或参数。一定的规律改变可调机
6、构的结构或参数。主要组成:主要组成:参考模型参考模型 可调机构可调机构 自适应机构自适应机构 模型参考自适应控制系统结构图模型参考自适应控制系统结构图(4 4)自校正控制)自校正控制2.1 2.1 自适应控制概述自适应控制概述 2.1.2 2.1.2 自适应控制系统的分类自适应控制系统的分类自校正控制系统结构图自校正控制系统结构图自校正控制系统又称自校正控制系统又称自优化控制自优化控制或或模型辨识自适应控制模型辨识自适应控制。通过采集的过程输入、输出信息,实现过程模型的在线辨识和参数估计。通过采集的过程输入、输出信息,实现过程模型的在线辨识和参数估计。在获得的过程模型或估计参数的基础上,按照一
7、定的性能优化准则,计算控在获得的过程模型或估计参数的基础上,按照一定的性能优化准则,计算控制参数,使得闭环系统能够达到最优的控制品质。制参数,使得闭环系统能够达到最优的控制品质。返 回2.2 2.2 模型参考自适应控制模型参考自适应控制2.2.1 2.2.1 模型参考自适应控制的数学描述模型参考自适应控制的数学描述模型参考自适应控制系统由模型参考自适应控制系统由参考模型参考模型、可调系统可调系统和和自适应机构自适应机构三部分组成三部分组成.理想模型理想模型 根据系统广义误差根据系统广义误差 ,按照按照一定的规律改变可调系统的结构或参数。一定的规律改变可调系统的结构或参数。参考模型参考模型主要组
8、成:主要组成:可调机构可调机构 自适应机构自适应机构 状态误差向量状态误差向量 输出误差向量输出误差向量 参考模型与可调系统间的参考模型与可调系统间的一致性程度表达一致性程度表达:目的目的:保证参考模型和可调系统间:保证参考模型和可调系统间 的性能一致性。的性能一致性。参考模型的状态和输出参考模型的状态和输出系统的状态和输出系统的状态和输出模型参考自适应控制系统结构图模型参考自适应控制系统结构图 广义误差向量广义误差向量 不为不为0 0时,自适应机构按照一定规律改变可调机构的结构或参数时,自适应机构按照一定规律改变可调机构的结构或参数或直接改变被控对象的输入信号,以使得系统的性能指标达到或接近
9、希望的性能指或直接改变被控对象的输入信号,以使得系统的性能指标达到或接近希望的性能指标。标。2.2 2.2 模型参考自适应控制模型参考自适应控制2.2.1 2.2.1 模型参考自适应控制的数学描述模型参考自适应控制的数学描述参数自适应方案:通过更新参数自适应方案:通过更新可调机构的参数可调机构的参数来实现的模型参考自适应控制。来实现的模型参考自适应控制。信号综合自适应方案:通过改变施加到信号综合自适应方案:通过改变施加到系统的输入端信号系统的输入端信号来实现的模型参考自适应来实现的模型参考自适应 控制。控制。模型参考自适应控制系统结构图模型参考自适应控制系统结构图2.2.1 2.2.1 模型参
10、考自适应控制的数学描述模型参考自适应控制的数学描述2.2.1.1 2.2.1.1 并联模型参考自适应系统的数学模型并联模型参考自适应系统的数学模型并联模型参考自适应系统可以用并联模型参考自适应系统可以用状态方程状态方程和和输入输出方程输入输出方程进行描述。进行描述。一、用状态方程描述的模型参考自适应系统一、用状态方程描述的模型参考自适应系统 (2.1)参考模型:参考模型:n维状态向量维状态向量m维分段连续的输入向量维分段连续的输入向量相应维数常数矩阵相应维数常数矩阵 参考模型为稳定的,并且是完全可控和完全可观测的参考模型为稳定的,并且是完全可控和完全可观测的。在在可调参数可调参数模型参考自适应
11、系统中,可调系统模型参考自适应系统中,可调系统(2.2)相应维数时变矩阵相应维数时变矩阵 n维状态向量维状态向量m维分段连续的输入向量维分段连续的输入向量为广义误差向量为广义误差向量 对于对于连续模型连续模型参考自适应控制系统参考自适应控制系统 一、用状态方程描述的模型参考自适应系统一、用状态方程描述的模型参考自适应系统 2.2.1.1 2.2.1.1 并联模型参考自适应系统的数学模型并联模型参考自适应系统的数学模型对于信号综合自适应方案的模型参考自适应系统中,系统模型对于信号综合自适应方案的模型参考自适应系统中,系统模型(2.3)根据广义误差信号,按照一定的自适应规律产生的根据广义误差信号,
12、按照一定的自适应规律产生的 对于对于离散模型离散模型参考自适应控制系统参考自适应控制系统(2.4)参考模型参考模型 可调系统的参数自适应方案的系统模型可调系统的参数自适应方案的系统模型 (2.5)(2.6)信号综合自适应方案的系统模型信号综合自适应方案的系统模型二、用输入输出方程描述的模型参考自适应系统二、用输入输出方程描述的模型参考自适应系统2.2.1.1 2.2.1.1 并联模型参考自适应系统的数学模型并联模型参考自适应系统的数学模型参考模型参考模型 对于连续系统一般对于连续系统一般采用微分算子的形式采用微分算子的形式表示表示(2.7)(2.8)(2.9)标量输入信号标量输入信号 标量输出
13、信号标量输出信号 参考模型的输入输出方程的常系数参考模型的输入输出方程的常系数 在在参数自适应方案参数自适应方案中,可调系统的输入输出方程中,可调系统的输入输出方程 (2.10)(2.11)(2.12)时变系数时变系数 由广义误差由广义误差 通通过自适应规律进行自适应过自适应规律进行自适应调整调整微分算子微分算子 二、用输入输出方程描述的模型参考自适应系统二、用输入输出方程描述的模型参考自适应系统2.2.1.1 2.2.1.1 并联模型参考自适应系统的数学模型并联模型参考自适应系统的数学模型在在信号综合自适应方案信号综合自适应方案中,可调系统的输入输出方程为中,可调系统的输入输出方程为 (2.
14、13)(2.14)(2.15)对于对于离散模型离散模型参考自适应控制系统输入输出方程可用下述几式描述参考自适应控制系统输入输出方程可用下述几式描述 参考模型参考模型(2.16)(2.17)(2.18)参数向量参数向量 信号向量信号向量 在参数自适应方案中,可调系统模型为在参数自适应方案中,可调系统模型为 (2.19)(2.20)(2.21)可调参数向量可调参数向量 信号向量信号向量 模型参考自适应系统模型参考自适应系统状态方程状态方程描述对比描述对比连续连续模型参考自适应系统模型参考自适应系统(2.1)参考模型:参考模型:(2.2)在可调在可调参数参数模型参考自适应系统中,可调系统模型参考自适
15、应系统中,可调系统 对于对于信号信号综合自适应方案的模型参考自适应系统中,系统模型综合自适应方案的模型参考自适应系统中,系统模型(2.3)离散离散模型参考自适应系统模型参考自适应系统(2.4)参考模型参考模型 可调系统的可调系统的参数参数自适应方案的系统模型自适应方案的系统模型 (2.5)(2.6)信号信号综合自适应方案的系统模型综合自适应方案的系统模型模型参考自适应系统模型参考自适应系统输入输出方程输入输出方程描述对比描述对比连续连续模型参考自适应系统模型参考自适应系统参考模型:参考模型:在可调参数模型参考自适应系统中,可调系统在可调参数模型参考自适应系统中,可调系统 对于信号综合自适应方案
16、的模型参考自适应系统中,系统模型对于信号综合自适应方案的模型参考自适应系统中,系统模型离散离散模型参考自适应系统模型参考自适应系统(2.7)(2.10)(2.13)参考模型参考模型(2.16)在参数自适应方案中,可调系统模型为在参数自适应方案中,可调系统模型为 (2.19)2.2.1.2 2.2.1.2 模型参考自适应系统的设计要求模型参考自适应系统的设计要求2.2.1 2.2.1 模型参考自适应控制的数学描述模型参考自适应控制的数学描述 模型参考自适应控制系统的设计目标是模型参考自适应控制系统的设计目标是:对给定的参考模型和可调系统,:对给定的参考模型和可调系统,确确定一个特定的自适应规律定
17、一个特定的自适应规律,以使广义误差向量,以使广义误差向量 或广义输出误差或广义输出误差 按照这一特定按照这一特定的自适应规律来的自适应规律来调整参数矩阵调整参数矩阵 和和 ,或,或可调参数可调参数 和和 ,或或辅助信号辅助信号 和和 ,在系统稳定情况下,这种调节作用使得广义误差向量在系统稳定情况下,这种调节作用使得广义误差向量 (广义输出误差广义输出误差)逐渐趋向零值。逐渐趋向零值。状态方程描述的模型参考自适应规律状态方程描述的模型参考自适应规律(2.22)(2.24)(2.23)(2.25)(2.26)(2.27)其中其中 ,且,且 式中,式中,矩阵,矩阵 称为称为线性补偿器线性补偿器,它的
18、作用是为了,它的作用是为了满足系统稳定满足系统稳定性所需附加的补偿条件性所需附加的补偿条件。2.2.1.3 2.2.1.3 模型参考自适应系统的等价误差系统模型参考自适应系统的等价误差系统2.2.1 2.2.1 模型参考自适应控制的数学描述模型参考自适应控制的数学描述等价误差系统:等价误差系统:用误差向量 作为状态变量的来表示模型参考自适应系统.在以状态方程描述的参数自适应方案中,等价系统的状态向量是(2.2)(2.1)参考模型:可调系统模型:状态方程描述的参数自适应方案 等价误差系统:等价误差系统:非线性时变反馈系统非线性时变反馈系统 线性部分非线性部分 模型参考自适应控制系统的设计目标是模
19、型参考自适应控制系统的设计目标是使得广义误差向量使得广义误差向量 (广义输出误差广义输出误差)逐渐逐渐趋向零值。趋向零值。2.2.1.3 2.2.1.3 模型参考自适应系统的等价误差系统模型参考自适应系统的等价误差系统2.2.1 2.2.1 模型参考自适应控制的数学描述模型参考自适应控制的数学描述同理:离散系统的等价误差方程为模型参考自适应系统的等价误差系统示意图模型参考自适应系统的等价误差系统示意图2.2.2 2.2.2 采用采用LyapunovLyapunov稳定性理论的设计方法稳定性理论的设计方法2.2.2.1 2.2.2.1 稳定性的一般定义稳定性的一般定义 一个控制系统的稳定性,通常
20、是指一个控制系统的稳定性,通常是指在外部扰动作用停止后,系统恢复初始平衡在外部扰动作用停止后,系统恢复初始平衡状态的性能。状态的性能。(2.29)某非线性系统的状态方程 若存在一状态向量 ,满足下式则 就是系统的一个平衡状态平衡状态。在外力作用下,系统是依然处在这个平衡状态,还是离平衡状态越来越远,就是所要讨论的平衡状态的稳定性问题平衡状态的稳定性问题。如果系统受到有界扰动的作用,无论初始偏差多大,其过渡过程都将逐渐衰减逐渐衰减,并能以一定的准确度恢复到平衡状态,则称该系统具有稳定性系统具有稳定性,否则系统不稳定。如果受到扰动作用后,系统在平衡状态附近平衡状态附近发生微小偏离,且随后系统的所有
21、运动状态都处于平衡状态附近的小范围内,就称为系统的平衡状态是稳定平衡状态是稳定的。2.2.2.2 2.2.2.2 Lyapunov意义下的稳定性概念意义下的稳定性概念2.2.2 2.2.2 采用采用LyapunovLyapunov稳定性理论的设计方法稳定性理论的设计方法(2.29)非线性系统的状态方程非线性系统的状态方程 二维情况下系统稳定性的几何解释二维情况下系统稳定性的几何解释 平衡状态是稳定的平衡状态是稳定的:平衡状态是不稳定的平衡状态是不稳定的:平衡状态是一致稳定的平衡状态是一致稳定的:(a)(a)平衡状态稳定平衡状态稳定 (a)(a)平衡状态不稳定平衡状态不稳定 如式(2.29)描述
22、的动态系统,若对任意给定的实数 ,存在另一个正数 ,使得当 的系统响应 在所有时间内都满足 ,则系统的平衡状态是稳定的。如果对于平衡点 和任意给定的邻域 ,找不到满足稳定条件的相对邻域 ,则系统在该平衡点是不稳定的,也称系统是不稳定的。如果所取的邻域 和 与初始时刻 无关,即对于任意的初始时刻稳定条件不变,则称该平衡状态是一致稳定的。二维情况下系统渐近稳定性的几何解释二维情况下系统渐近稳定性的几何解释 平衡状态是渐进稳定的:平衡状态是渐进稳定的:2.2.2.2 2.2.2.2 Lyapunov意义下的稳定性概念意义下的稳定性概念2.2.2 2.2.2 采用采用LyapunovLyapunov稳
23、定性理论的设计方法稳定性理论的设计方法 式(2.29)描述的动态系统,如果系统的平衡状态 及初始点 的解 ,满足当 时,有 ,则称该平衡状态 是渐进稳定渐进稳定的。平衡状态是一致渐进稳定的:平衡状态是一致渐进稳定的:如果平衡状态 是渐进稳定的,且系统稳定性与初始时刻 无关,则称系统是一致渐近稳定一致渐近稳定的。平衡状态是全局渐进稳定的平衡状态是全局渐进稳定的:如式(2.29)描述的动态系统,如果系统的平衡状态 ,对状态空间中所有的初始状态 ,都满足 ,则称平衡状态是全局渐进稳定的平衡状态是全局渐进稳定的。(2.29)2.2.2.3 2.2.2.3 Lyapunov稳定性定理稳定性定理2.2.2
24、 2.2.2 采用采用LyapunovLyapunov稳定性理论的设计方法稳定性理论的设计方法如果以 代表能量,则物体从高能位向低能位的运动过程特征可以表示为:Lyapunov虚构了一个以状态变量描述的能量函数状态变量描述的能量函数 ,只要 且不需要求解系统运动方程就可以判断系统的稳定性。不需要求解系统运动方程就可以判断系统的稳定性。称 函数为LyapunovLyapunov函数函数。如果则称 函数是正定正定的。如果则称 函数是半正定半正定的。如果则称 函数是负定负定的。则称 函数是半负定半负定的。如果定义:定义:例例:当 为二维状态向量时,判断下列函数的特性是正定的;是半正定的;是负定的;是
25、半负定的;是不定的;2.2.2.3 2.2.2.3 Lyapunov稳定性定理稳定性定理2.2.2 2.2.2 采用采用LyapunovLyapunov稳定性理论的设计方法稳定性理论的设计方法对于线性系统,通常选Lyapunov函数只要 是正定的,Lyapunov函数 就是正定的。若对称矩阵 ,对任何非零向量 都满足 ,则矩阵 就是正定矩阵。补充概念:正定矩阵补充概念:正定矩阵判断正定矩阵的方法判断正定矩阵的方法1.1.求出求出A A 的所有的所有特征值特征值。若。若A A 的特征值均为正数,则的特征值均为正数,则A A 是正定的;若是正定的;若A A 的特的特 征值均为负数,则征值均为负数,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自适应 控制 课件 _ok
限制150内