黑龙江省哈师大附中2021-2022学年高一下学期4月月考试题(解析版).docx
《黑龙江省哈师大附中2021-2022学年高一下学期4月月考试题(解析版).docx》由会员分享,可在线阅读,更多相关《黑龙江省哈师大附中2021-2022学年高一下学期4月月考试题(解析版).docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、黑龙江省哈师大附中2021-2022学年高一下学期4月月考数学试题一、单选题(共8小题,满分40分).在 AABC 中,q = 4, A = 60。,C = 75。,则b 的值为()D. 2百+ 1A.皿5B. 2 + 2后C. 2a/631 .已知向量丁 = (2,3), 5 = (3,2),贝!|上一回二()A. a/2B. 2C. 572D. 502 .已知|初=4, |b|=3,则向量M与6的夹角是( )A. 30A. 30B. 60C. 120D. 1503 .设复数Z = Q +切(其中、i为虚数单位),则“ =0”是“Z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要
2、条件D.既非充分又非必要条件4 .在 A43C 中,lg(sin A + sin C) = 21g sin B - lg(sin C - sin A),则 A/WC 的形状为( )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形.在AABC中,根据下列条件解三角形,其中有两解的是( )A. = 10, A = 45。, C = 70B. a = 30, = 25, A = 150C. q = 7, = 8, A = 98。D. a = 14, h = 16, A = 455 .骑自行车是一种环保又健康的运动,图是某一自行车的平面结构示意图,已知图中的圆A(前轮),圆。(后轮)的半径
3、均为VL AABE、ABEC. AECD均是边长为4的等边三角形.设点。为后轮上的一点,则在骑动该自行车的过程中,衣丽的最大值为( )A. 48B. 36C. 72D. 60/. | ex + 也 |= J(6 + X,)2 - Jl + %2 +2/tcos。= /(A + cos)2 + -cos20 ,.2 g R ,.4 = cos0,1年+几,1的最小值为VT一 cos?。,. I 1 +|的最小值为9,Jicos?。=,解得 cos3 = 9 即 e =火或 e =,当。=工时,3当。=工时,316 + % |= Jl +1 + 2 cos 6 = /3 , 4【答案】ABD12
4、.【解析】因为3。为3的平分线,B = -,3jrS jr所以 NABO = NC3O = , BD = BC = 2,则 NC = N5OC = ,由正弦定理得空=空=2夜,由正弦定理得空=空=2夜,sin A sin C124所以AB = 2挺xsin2 = 2&x/+遍= g + l ,= -ABBC sin ZABC = -xax2x*挈,C正确;若BD = BC = 2, A = -,由正弦定理得2R = 4一=义=2及, 4sin A y/23所以AABC的外接圆半径B错误;若BD = BC = 2,由正弦定理得也=,卫=-;八兀 sin ZADB sinc;n 兀 sin ZCB
5、D sin因为NAD区与NBQC互补,所以 sinZAW? = sinZBDC ,= - , A, D 正确.DC BC 2【答案】ACD三、填空题(共4小题,每小题5分,满分20分)13.【解析】OAA.OB .解得m =.2【答案】-214 .【解析】口5的夹角。为钝角又向量 M = (x, 2x), b = (-3%, 2) , ,cos 9 = & :船 。团闻 V5 |x|-V3x2+4即一3x2+4xv0解x 19 111AM - HF = (Z? Hq) (qb) =crb Hci - b26261218.解:(1) AABC中,角A、B、。的对边分别为a、b、且 sin3 =
6、asin A + (c )sinC .所以 =/ 十一 a)c,整理得 cosB = +c=,2ac 2由于:0v3兀,故3 =乙. 3(2)3sin C = 2 sin A ,由正弦定理可得:3c = 2a,.,/18。的面积为66 = !。5由8 = 4(?,解得:ac 24, 24二由角翠得:。=6, 。= 4,由余弦定理可得:h-yja2 +c2 -2accosB =小36 +16-2x6x4xg = 2近.19.解:(1). AP=PB ,. OP = OA + AP = OA + -AB = OA-(OB-OA) = -OA + -OB,x=y = -.22222(2)以O为坐标原
7、点建立如图所示平面直角坐标系,则 A(2,0), B(0,4), A后二 (2,4),设尸(,y),则 A户= (x-2,y),x 2 = -24y = 4Ax = 2 2%y = 4A P(2-22,42),?. PA PB = 2/1(22-2)-42(4-4A) = 2022 -202 = 20(2-)2 -, 24,.,P为线段AB上异于端点的一点,.0v2vl ,?. 20 x (1 -1)2 -1, 4. pfi 20 x (1 -1)2 -1 , P -5 PAPB09 2 2424故万丽的取值范围为-5 , 0).20.解:(1) v /n = (2sin ,1),/? = (
8、,cos),且用/万, 2 2 sin - cos - = -, f(x) = m = sin-bcos-,22 222即/(幻=义;即/(幻=义;而(sin+ cos)2 = 1 + 2sin cos=, 2222 2则 sin + cos = 222(2)已知 acosC- - c = b , 2由正弦定理得:sin Acos C +sin C = sin B, 2又 sin B = sin(A + C) = sin Acos C + cosAsin C ,化简整理得:cos A =走,2八 a4兀八 c 5兀兀 37127rO v A v 兀,A ,0 v 3 9 I 4 = 1 - s
9、in Bsin C,sin2 B + sin2 C - sin2 A = sin Bsin C ,由正弦定理得,h2-c2-a2=bc9故 cosA = X2bcbe _ I 2b2,由A为三角形内角,得4 =巴;3(2) ,: a = 6,3 = Z72 + c2 -2Z?ccos = b1 + c2 -be = (b + c)2 -3bc ,得 3 = (b + c-3bc. (Z? + c)2 (/? + c)2 =, 44. +。,2石,当且仅当b = c时取等号,又 b + c a = 6 , :.a + b + ce (273 , 3g.即AA3C的周长的取值范围是(2G, 3a/
10、3.cc 左刀 /, c Z?2 + c2 - a日 1 7 . a 2/?ccosA22.解:(1).S=,可得一/?csinA =,424/. sin A cos A 可得 tan A = 1, . A (0,兀),A =工,: a =娓,b = V2 ,4 由正弦定理一=上,可得sin3=aa=二-=逅, sin A sin Ba6又.,ab, 6为锐角,/.cosB = Vl-sin2B =.6.aJ,4sin(A + 8) + sin Bcos B + cos(B - A)71兀=sin(B + ) + sin B cos B + cos(B)44V2 . D V2 d D D a/
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 黑龙江省 师大附中 2021 2022 学年 一下 学期 月月 考试题 解析
限制150内