立体几何2017年全国各地高考文科数学试题分类汇编(解析)(共16页).doc
《立体几何2017年全国各地高考文科数学试题分类汇编(解析)(共16页).doc》由会员分享,可在线阅读,更多相关《立体几何2017年全国各地高考文科数学试题分类汇编(解析)(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017高考立体几何汇编1.【2017课标1,文6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是 A B C D【答案】A【解析】【考点】空间位置关系判断【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题证明线面平行的常用方法:利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于
2、另一平面 2.【2017课标II,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. B. C. D. 【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为,故选B.【考点】三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图2三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.【2017课标3,文9】已知圆柱的高为1,它的两个底面的圆周
3、在直径为2的同一个球的球面上,则该圆柱的体积为( )ABC D【答案】B来源:学_科_【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.4【2017课标3,文10】在正方体中,E为棱CD的中点,则( )ABCD【答案】C【解析】根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A.若,那么,很显然不成立;B.若,那么,显然
4、不成立;C.若,那么,成立,反过来时,也能推出,所以C成立,D.若,则,显然不成立,故选C.【考点】线线位置关系5.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60 (B)30(C)20 (D)10【答案】D【解析】试题分析:该几何体是三棱锥,如图:图中红色线围成的几何体为所求几何体,该几何体的体积是,故选D.【考点】1.三视图;2.几何体的体积.【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面的外面,否则中间的那条线就不会是虚线.
5、6.【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【答案】 【考点】球与几何体的组合体【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱
6、锥的外接球,这样做题比较简单.7.【2017课标1,文16】已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为_【答案】【解析】试题分析:取的中点,连接因为所以因为平面平面所以平面设来源:学科所以,所以球的表面积为【考点】三棱锥外接球8.【2017课标II,文15】长方体的长、宽、高分别为,其顶点都在球的球面上,则球的表面积为 【答案】【解析】球的直径是长方体的体对角线,所以【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作
7、截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.9.【2017江苏,6】 如图,在圆柱内有一个球,该球与圆柱的上、下面及母线均相切.记圆柱的体积为,球的体积为,则的值是 .OO1O2(第6题) 【答案】 【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解 (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解10.【20
8、17山东,文13】由一个长方体和两个 圆柱构成的几何体的三视图如图,则该几何体的体积为 .【答案】【解析】试题分析:由三视图可知,长方体的长宽高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以.【考点】三视图及几何体体积的计算.【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则.来源:学#科#Z#X#X#K(2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:看视图,明关系;分部分,想整体;综合起来,定整体11.【2017课标1,文18】如图,在四棱锥P-AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 2017 全国各地 高考 文科 数学试题 分类 汇编 解析 16
限制150内