信号与系统奥本海姆英文版课后答案chapter2.docx
《信号与系统奥本海姆英文版课后答案chapter2.docx》由会员分享,可在线阅读,更多相关《信号与系统奥本海姆英文版课后答案chapter2.docx(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Chapter 2 answers2.1 (a) We have know that yx = xn*hn = hkxn-kThe signals xn and hn are as how in Figure S2.1 2 xn1 .3 e o 124 n-lol2 nFigure S2.1-1From this figure, we can easily see that the above convolution sum reduces to yn = h-lxn + 1 + hixn -1=2xn + 1 + 2xn -1This givesy1n = 28n + 1 + 4况+ 2bl
2、 1 + 2dn-2-2dn -4 (b)We know that 00y2n = xn + 2*hn = Z 网+ 2-k k=-gComparing with eq.(S2.1-1),we see that+ 2(c) We may rewrite eq.(S2.1-l) as 8 yxn =*hn = xkhn-kk=-x)Similarly, we may write 00 y3n = xn*hn + 2= xkhn + 2-k k=_gComparing this with eq.(S2.1),we see that y3n = yn + 22.2 Using given defin
3、ition for the signal hn, we may write (ihk= - tik + 3-uk-WThe signal hk is non zero only in the rang hn = hn + 2 . From this we know that the signal h-k is non zero only in the rage 9 A: =0(e _/例)/(0_a),(,) .y(t) =Thenteatu(t) r a = 0(b) the desire convolution iscooy(t)=X(T)h(t-T)dT0052 h(t-T)dT= h(
4、t-r)dT _This may be written as y(t)=i*5/(=)- e2(tr)dT,l=t=3J2J 2一= / = 60,6 ZTherefore(1 / 2)/口 _ 2/4+/10/=(1 /2)e2te22f+e-10-2e-49l=t 2ze-10 -e2-2tl3= t = 60.6 t(c) the desire convolution isE广2x(r)/z(Z-r)6/r = J sin(7zr)(,,This give usy(t尸0/ 1(2/)l-cosM/-l),lZ 3 (2/万)cos开a一 3) 1,3v 1 5 0,5(/-2)wher
5、e4 (0=4/3,0 =/=10, otherwiseNowY(t)=h(t)*x(t)= h(t)*x(t)- - x(Z 2)We havect 44 ii (t)* x(t)= j t -(ai + b)di = -at2-a(t-1)2 + - b(t -1)33 22Therefore4 i i1y(t)= -at2-a(t-)2 +bt-b(t -1)a(t-2) + b = at + b = x(t)(f) x(t) periodic implies y(t) periodic determine 1 period only. we havey(t)= Jj : (C dz +
6、 J (1 - / + T)dv = +Z-124The2.23 Y(t) is sketchedTherefore1/p (1 f + j (Z-l-r)t/r =? 3Z + 7/4厂iJ22periodic of y(t) is 2.in figure s2.23 for the different values of T.3/ %1=3h2= 42+ 241+ 40n %=3h3= 43+ 242 + %ln%3=2h4= %4+ 2A13 + /z12=/z14=l h5= 4 5 + 24 4 + . 3 = 5 =0. h1n =0 for n=5. (b) in this ca
7、seYn=xn *hn=hn-hn-1 .2.25 (a)we may write xn asxn= (1)l,|!Now the desire convolution is yn= hn *xn -i00=Z (1/3厂(1/4广,左 + 3 + (1/3)(1/4), 左 + 3 k=-gk=0By consider each summation in the above equation separately .we may show that f(124/ll)3n,/2= 3(b) now consider the convolution%同=(1/3)刎*(1/4)讥+ 3 We
8、may show that必 =必 =0, n -33(1/4)+3(256)(1/3) 2-3Also consider the convolution/卬= 1 * / 4) +3. We may show that以=f(124/ll)3/7-3Clearly , yn + y2n = yn obtained in the previous part. 2.26 (a) we have必n = xnx2n=Y X.kx2n-k k-= (0.5)“叩?+ 3口 &=oThis evaluates toy1n = xn x2n =,“30, otherwise(b) nowyn=13加*凹
9、=弘-,-1Therefore2(1 (1 / 2)-3)+ 2(1 (1 / 2)-4 ) = (1/2)3, 2 一2 yn= i 2J J S 1,77 = 30, otherwiseTherefore, yn= (1 / 2)/z+3 un+3.(c) we havey2M = x2nx3n =un+3-un+2= 8 n+3(d) from the result of part (c), we getYn= %* Xjh= xxn+3= (1 /2)*3un+32.27 the proof is as followsAy=y(t)d(t)J -ccneo30neo30x(r)h(t
10、-t) dr dt,808=x(r) h(t-T)dtdT J-X)J00=J 00812.28 (a) causal because hn=O for n0 stable because () =o 5(b)not causal because hn W 0 fbr n0 stable because5= 004(0.8) =5 0 unstable because (1/2) = oo3625(d) not causal because hn 0 for n0 stable because 乞(5) = ooM=-0C4(e) causal because hn=0 fbr n0 unst
11、able because the second term becomes infinite as n f oo .(f) not causal because hn W 0 fbr n0 stable because 力卬1=二一88(g) causal because hn=0 fbr n0. stable because 帆=1 oo二8305 0032.29. (a) causal because h(t)=Ofor t0. stable because ,依=es / 4 oo .(b) Not causal because h(t) W 0 for t0. Unstable beca
12、use /i(t) = oo.Joo(c) Not causal because h(t) W 0 fbr t0. a Stable because二 /J 00(d) Not causal because h(t) 0 for t0. stable because(e) Not causal because h(t) W 0 fbr t0. stable because(f) Causal because h(t)=O fbr t0. Stable because(g) Causal because h(t)=O fbr t0. Unstable because h(t)dt = ooJoo
13、2.30. We need to find the output of the system when the input is xn=8n.Since we are asked to assume initialrest ,we may conclude that yn=0. for n0.now, yn=xn-2yn-l?Therefore, y0=x0.2y-l=l,yl=xl-2 y0= -2,y2=x2+2y2= -4and so on. In closed form,yn=( - 2)心).this is the impulse response of the system.2.3
14、1. Initial rest implies that yn=0 for n 5.2.32. (a) If ,then we need to verifyAflYa 2Clearly this is true.(b) We now require that for n 0Therefore, B= -2.(c) From eq.(P2.32-1), we know that y0+( 1 /2)y-1 =x0= 1. Now we also have y0= A+B = A=l-B=3.2.33. (a) (i) From Example 2.14,we have know thaty(0
15、e2t (ii) We solve this along the lines of Example 2.14. First assume that yp (Z) is of the Form Ke1,For t0. Then using eq.(P2.33-l).we get fbr t02Ke2t+2Ke2t=e2t =k= 14We know that y = Le2t fbr t0. We may hypothesize the homogeneous solution to be of the form%=2Therefore,必二人一,, for t0Assuming initial
16、 rest. we can conclude that =0 fbr t A= 4Then,y2(0=-(iii) Let the input be x3 (t) = a e3lu(t) +0 e2lu(t) .Assume that the particular solution yp (?) is of the formyp(t) = Ki ae3tu(t)-K2e2tu(t)For t0. Using eq.(P2.33-1), we get3K ae3tu(t) +2K2e2tu(t)+2K1 ae3tu(t) +2K2e2tu(t)=a3t +pe2z.Equating the co
17、efficients of e and e . On both sides, we getK =1/5 and A?2=l/4,we getNow hypothesizing that yp (t) = e 2,%(%)= a3zw(Z)+ pe2fu(t) + Ae2fFor t0. Assuming initial rest,凡 ) = 0 = A + a / 5+ 0 / 4 =A= -(a / 5+0 / 4)Therefore,y3 (,) = ae3z + pe2z + y4e_2z Clearly,+0%).(iv) for the input-output pair x (/)
18、and y (?), we may use eq.(P2.33-1) and the initial restCondition to write虫包+ 2必,=。加长4(S2.33-1)dtFor the input-output pair x2 (t) and y2 (/) , we may use eq.(P2.33-1) and the initial rest condition to write虹。+ 2%。)=%2()%(。= 02(S2.33-2)dtScaling eq.(S2.33-1) by a and eq.(S2.33-2) by 0 and summing, we
19、get d孙(0 + 例2 ) + 2孙(0 + 例2 =(0 + 此,atAndy1 (t) + y2 (?) = 0 for tmin( tt2)By inspection, it is clear that the output is y3 (/) = a yl (t) +0 y2 (/) when the input is x3 (/) = a%1 (f) +px2 (t). Furthermore, y3 () = 0 for tT. Then using eq.(P2.33-1), we get for tT2Ke2(tT) +2Ke2(z-r)= e1t = K=l/4.We k
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号 系统 英文 课后 答案 chapter2
限制150内