教育专题:222二次函数与一元二次方程(1).ppt
《教育专题:222二次函数与一元二次方程(1).ppt》由会员分享,可在线阅读,更多相关《教育专题:222二次函数与一元二次方程(1).ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 二次函数与一元二次方程二次函数与一元二次方程中南大学第一附属中学中南大学第一附属中学 薛志军薛志军回顾旧知回顾旧知二次函数的一般式:二次函数的一般式:(a0)_是自变量,是自变量,_是是_的函数。的函数。xyx 当当 y=0 时,时,ax+bx+c=0ax+bx+c=0这是什么方程?这是什么方程?上一章节我们学上一章节我们学习了习了“一元二次一元二次方程方程”一元二次方程与二一元二次方程与二次函数有什么关系?次函数有什么关系?学习目标学习目标【知识与能力知识与能力】总结出二次函数与总结出二次函数与x轴交点的个数与一轴交点的个数与一元二次方程的根的个数之间的关系,表述元二次方程的根的个数之间的
2、关系,表述何时方程有两个不等的实根、两个相等的何时方程有两个不等的实根、两个相等的实数和没有实根。实数和没有实根。会利用二次函数的图象求一元二次方程会利用二次函数的图象求一元二次方程的近似解。的近似解。重难点重难点 二次函数与一元二次方程之间的关系。二次函数与一元二次方程之间的关系。利用二次函数图像求一元二次方程的实数根。利用二次函数图像求一元二次方程的实数根。一元二次方程根的情况与二次函数图像与一元二次方程根的情况与二次函数图像与x轴位轴位置关系的联系,数形结合思想的运用。置关系的联系,数形结合思想的运用。利用二次函数的图象求一元二次方程的近似解。利用二次函数的图象求一元二次方程的近似解。以
3、以 40 m/s的速度将小球沿与地面成的速度将小球沿与地面成 30角的方角的方向击出时,球的飞行路线是一条向击出时,球的飞行路线是一条抛物线抛物线,如果不考,如果不考虑空气阻力,球的飞行高度虑空气阻力,球的飞行高度 h(单位单位:m)与飞行时间与飞行时间 t(单位单位:s)之间具有关系:之间具有关系:h=20 t 5 t 2 考虑下列问题考虑下列问题:(1)球的飞行高度能否达到)球的飞行高度能否达到 15 m?若能,需要若能,需要多少时间多少时间?(2)球的飞行高度能否达到)球的飞行高度能否达到 20 m?若能,需要若能,需要多少时间多少时间?(3)球的飞行高度能否达到)球的飞行高度能否达到
4、20.5 m?为什么?为什么?(4)球从飞出到)球从飞出到落地落地要用多少时间要用多少时间?实际问题实际问题解:解:(1)当)当 h=15 时,时,20 t 5 t 2=15t 2 4 t 3=0t 1=1,t 2=3当球飞行当球飞行 1s 和和 3s 时,它的高度为时,它的高度为 15m.1s3s15 m (2)当)当 h=20 时,时,20 t 5 t 2=20t 2 4 t 4=0t 1=t 2=2当球飞行当球飞行 2s 时,它的高度为时,它的高度为 20m.2s20 m (3)当)当 h=20.5 时,时,20 t 5 t 2=20.5t 2 4 t 4.1=0因为因为(4)244.1
5、 0,所以方程,所以方程无实根无实根。球的飞行高度达不到球的飞行高度达不到 20.5 m.20.5 m (4)当)当 h=0 时,时,20 t 5 t 2=0t 2 4 t =0t 1=0,t 2=4当球飞行当球飞行 0s 和和 4s 时,它的高度为时,它的高度为 0m,即,即 0s时,球从地面飞出,时,球从地面飞出,4s 时球落回地面。时球落回地面。0s4s0 m已知二次函数,求自变量的值已知二次函数,求自变量的值解一元二次方程的根解一元二次方程的根二次函数与一元二次方程的关系(二次函数与一元二次方程的关系(1)下列二次函数的图象下列二次函数的图象与与 x 轴有交点轴有交点吗吗?若有,求出交
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 222 二次 函数 一元 二次方程
限制150内