第八章波动光学 (1).ppt
《第八章波动光学 (1).ppt》由会员分享,可在线阅读,更多相关《第八章波动光学 (1).ppt(98页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、大学物理学电子教案大学物理学电子教案信息学院教学课件信息学院教学课件第八章第八章 波动光波动光学学几何光学几何光学以光的直线传播和反射、折射定律为基础,研究以光的直线传播和反射、折射定律为基础,研究光学仪器成象规律。光学仪器成象规律。物理光学物理光学以以光光的的波波动动性性和和粒粒子子性性为为基基础础,研研究究光光现现象象基基本本规律。规律。波波动动光光学学光光的的波波动动性性:研研究究光光的的传传输输规规律律及及其应用的学科其应用的学科量量子子光光学学光光的的粒粒子子性性:研研究究光光与与物物质质相相互互作作用规律及其应用的学科用规律及其应用的学科本章学习内容:本章学习内容:波动光学:光的干
2、涉、衍射、偏振波动光学:光的干涉、衍射、偏振 光的干涉和衍射现象表明了光的波动光的干涉和衍射现象表明了光的波动性,而光的偏振现象则显示了性,而光的偏振现象则显示了光是横波光是横波。一、光波一、光波1光波的概念:光波的概念:81 光波及其相干条件光波及其相干条件2光的颜色:光的颜色:单色光单色光只含单一波长的光:激光只含单一波长的光:激光复复色色光光不不同同波波长长单单色色光光的的混混合合:白白光光红外光:红外光:0.76m可见光:可见光:0.40m与与0.76m之之间间紫外光:紫外光:0.40m光波也可用上面的平面简谐光波也可用上面的平面简谐波的波函数来表示波的波函数来表示 可可见见光光,即即
3、能能引引起起人人的的视视觉觉的的电电磁磁波波,它它的的频频率率在在3.91014 7.51014Hz之之 间间,相相 应应 真真 空空 中中 的的 波波 长长 在在76004000之之间间。不不同同频频率率的的光光,颜颜色色也也不不同同。频频率与颜色如表率与颜色如表8-1所示。所示。红红 光光 76006200 3.91014 4.8 1014Hz 橙橙 光光 62005900 4.81014 5.1 1014Hz 黄黄 光光 59005600 5.11014 5.4 1014Hz 绿绿 光光 56005000 5.41014 6.0 1014Hz 青青 光光 50004800 5.01014
4、 6.31014Hz 蓝蓝 光光 48004500 6.31014 6.7 1014Hz 紫紫 光光 4500 3900 6.71014 7.5 1014Hz 表表8-1 可见光的波长和频率范围可见光的波长和频率范围3光矢量光矢量 光的平均能流密度,表示单位时间内通过与传光的平均能流密度,表示单位时间内通过与传播方向垂直的单位面积的光的能量在一个周期内的播方向垂直的单位面积的光的能量在一个周期内的平均值平均值 I=E02 光波是横波。就能量的传输而言,光波中的电场光波是横波。就能量的传输而言,光波中的电场E和磁场和磁场H是同等重要的。但实验证明是同等重要的。但实验证明,引起眼睛视引起眼睛视觉效
5、应和光化学效应的是光波中的电场觉效应和光化学效应的是光波中的电场,所以我们把所以我们把光波中的电场强度光波中的电场强度E称为光矢量称为光矢量(或光振动或光振动)。4光强光强二、光程二、光程波长为波长为的光在真空中传播了的光在真空中传播了l的的 路程其相位的变化为路程其相位的变化为 2l/,如果同样的光在折射率为如果同样的光在折射率为n的介质中传播了的介质中传播了x的路程,的路程,其相位的变化正好也为其相位的变化正好也为,则有,则有 2x/,其中其中是光在是光在这种介质中的波长。于是可以得到:这种介质中的波长。于是可以得到:由于介质的折射率可以表示为由于介质的折射率可以表示为n=c/v,而而对于
6、光波有对于光波有f=c/=v/,所以介质的折射率又可表示为:所以介质的折射率又可表示为:n=/因此可以得到因此可以得到光程光程即光在即光在折射率为折射率为n的介质中传播的介质中传播x的路程所引起的相位的的路程所引起的相位的变化,与在真空中传播变化,与在真空中传播nx的路程所引起的相位的变化是的路程所引起的相位的变化是相同的。相同的。三、光的干涉现象三、光的干涉现象1什么是光的干涉现象什么是光的干涉现象两束光的相遇区域形成稳定的、有强有弱的光强分布。两束光的相遇区域形成稳定的、有强有弱的光强分布。即由即由光波的叠加光波的叠加而引起的而引起的光强重新分布光强重新分布的现象称为的现象称为光的光的干涉
7、干涉。表示:当光在多种介质中传播表示:当光在多种介质中传播时,总的光程时,总的光程L等于光所经过的等于光所经过的介质的光程之和。介质的光程之和。光经过相同的光程所需要的时间是相等的。光经过相同的光程所需要的时间是相等的。因此,因此,物点和像点之间各光线的光程都相等。物点和像点之间各光线的光程都相等。物像物像之间的等之间的等光程性光程性相干条件相干条件其中其中 由波动理论知由波动理论知,振幅为振幅为E1和和E2的两列光波在某处叠加后的两列光波在某处叠加后,合合振动的振幅为振动的振幅为2相干条件相干条件振动方向相同振动方向相同振动频率相同振动频率相同相位相同或相位差保持恒定相位相同或相位差保持恒定
8、3 相干光与相干光源相干光与相干光源两束满足相干条件的光称为两束满足相干条件的光称为相干光相干光相应的光源称为相应的光源称为相干光源相干光源4明暗条纹条件明暗条纹条件明条纹:明条纹:=k k=0,1,2,暗条纹:暗条纹:=(2k+1)/2 k=0,1,2,3,l用用相位差相位差表示:表示:明条纹:明条纹:=2k k=0,1,2,暗条纹:暗条纹:=(2k+1)k=0,1,2,3,l用用光程差光程差表示表示根据光程差与相位差的关系根据光程差与相位差的关系 若若 02-01=0,则有,则有1.光源的发光机理光源的发光机理光源的最基本发光单元是分子、原子。光源的最基本发光单元是分子、原子。波列波列(2
9、)(2)普通光源:自发辐射普通光源:自发辐射(随机、独立随机、独立)不相干不相干(不同原子发的光不同原子发的光)不相干不相干(同一原子先后发的光同一原子先后发的光)能级跃迁辐射能级跃迁辐射E1E2 v=(E2-E1)/h 波列长波列长L=c(1)激光光源激光光源:受激辐射受激辐射 (在近代物理中讨论在近代物理中讨论)四、相干光的获得四、相干光的获得光波列长度:光波列长度:m结论:普通光源发出的光波结论:普通光源发出的光波不满足相干条件,不是相干不满足相干条件,不是相干光,不能产生干涉现象。光,不能产生干涉现象。特点:同一原子发光具有瞬时性特点:同一原子发光具有瞬时性和间歇性、偶然性和随机性,而
10、和间歇性、偶然性和随机性,而不同原子发光具有独立性。不同原子发光具有独立性。2获得相干光源的方法获得相干光源的方法原理:原理:将同一光源上同一点或极小区域发出将同一光源上同一点或极小区域发出的一束光分成两束,让它们经过不同的传播的一束光分成两束,让它们经过不同的传播路径后,再使它们相遇,它们是相干光。路径后,再使它们相遇,它们是相干光。方法:方法:分分波波前前法法:利利用用波波场场中中的的任任一一个个波波前前分分离离出出两两列波。列波。分振幅法:分振幅法:利用两个反射面产生两束反射光。利用两个反射面产生两束反射光。分分振振动动面面法法:利利用用某某些些晶晶体体的的双双折折射射性性质质,将将一束
11、光分解为振动面垂直的两束光。一束光分解为振动面垂直的两束光。SE82 分波前分波前干涉干涉一、杨氏双缝干涉一、杨氏双缝干涉托马斯托马斯杨(杨(Thomas Young)英国英国物理学家、医生和考古学家,光的物理学家、医生和考古学家,光的波动说的奠基人之一波动说的奠基人之一波动光学:波动光学:杨氏双缝干涉实验杨氏双缝干涉实验生理光学:生理光学:三原色原理三原色原理材料力学:材料力学:杨氏弹性模量杨氏弹性模量考古学考古学 :破译古埃及石碑上的文字破译古埃及石碑上的文字1、杨氏简介、杨氏简介2、杨氏双缝干涉、杨氏双缝干涉实验装置实验装置 1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个年,杨氏
12、巧妙地设计了一种把单个波阵面分解为两个波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现象。杨氏用象。杨氏用叠加原理叠加原理解释了干涉现象,在历史上第一次测定了解释了干涉现象,在历史上第一次测定了光的波长光的波长,为光的,为光的波动学说波动学说的确立奠定了基础。的确立奠定了基础。3、双缝干涉的光程差、双缝干涉的光程差两光波在两光波在P点的光程差为点的光程差为 =r2-r1 r12=D2+(x-a)2 r22=D2+(x+a)2所以所以 r22-r12=4ax即即 (r2-r1)(r2+r1)=4ax采用近似采用近似 r2+r12D光程差
13、为光程差为 =r2-r1=2ax/Dr2r1OPx2aS2S1D4、干涉条纹的位置、干涉条纹的位置(1)明条纹:)明条纹:=2ax/D=kk 中心位置:中心位置:x=(D/2a)2k(/2)k=0,1,2,(2)暗条纹:暗条纹:=2ax/D=(2k+1)/2 中心位置:中心位置:x=(D/2a)(2k+1)(/2)k=0,1,2,(3)条纹间距:条纹间距:相邻明纹中心或相邻相邻明纹中心或相邻暗纹中心的距离称为条纹暗纹中心的距离称为条纹间距间距 x=D/2a5、干涉条纹的特点、干涉条纹的特点双缝干涉条纹是与双缝平行双缝干涉条纹是与双缝平行的一组明暗相间彼此的一组明暗相间彼此等间距等间距的直条纹的
14、直条纹,上下对称。,上下对称。双缝间距双缝间距2a改变:改变:当当2a增大时,增大时,x减小,零级明纹中心位置不变,条纹变密。减小,零级明纹中心位置不变,条纹变密。当当2a减小时,减小时,x增大,条纹变稀疏。增大,条纹变稀疏。双缝与屏幕间距双缝与屏幕间距D 改变:改变:当当D 减小时,减小时,x减小,零级明纹中心位置不变,条纹变密。减小,零级明纹中心位置不变,条纹变密。当当D 增大时,增大时,x增大,条纹变稀疏。增大,条纹变稀疏。6、讨论、讨论 x=D/2a*(1)波长及装置结构变化时干涉条纹的移动和变化)波长及装置结构变化时干涉条纹的移动和变化对于不同的光波,若满足对于不同的光波,若满足k1
15、1=k22出现干涉条纹的重叠。出现干涉条纹的重叠。入射光波长改变:入射光波长改变:当当增大时,增大时,x增大,条纹变疏;增大,条纹变疏;当当减小时,减小时,x减小,条纹变密。减小,条纹变密。若用复色光源,则干涉条纹若用复色光源,则干涉条纹是彩色的。是彩色的。(2)介质对干涉条纹的影响介质对干涉条纹的影响在在S1后加透明介质薄膜后加透明介质薄膜(厚度为厚度为h),干涉条纹如何变化?,干涉条纹如何变化?零级明纹上移至点零级明纹上移至点P,屏上所有干涉条纹同屏上所有干涉条纹同时向上平移时向上平移。条纹移动距离条纹移动距离 OP=(n-1)Dh/(2a)移过条纹数目移过条纹数目 k=OP/x=(n-1
16、)h/若若S2后加透明介质薄膜,干涉条纹下移后加透明介质薄膜,干涉条纹下移。r2r1OPxdS2S1*若把整个实验装置置于折射率为若把整个实验装置置于折射率为n的介质中,的介质中,明条纹:明条纹:=n(r2-r1)=k k=0,1,2,暗条纹:暗条纹:=n(r2-r1)=(2k+1)/2 k=0,1,2,3,或或 明条纹:明条纹:r2-r1=2ax/D=k/n=k k=0,1,2,暗条纹暗条纹:r2-r1=2ax/D=(2k+1)/2n =(2k+1)k=0,1,2,3,为入射光在介质中的波长为入射光在介质中的波长条纹间距为条纹间距为 x=D/(2an)=D/2a干涉条纹变密。干涉条纹变密。*
17、7、光强分布、光强分布合光强为合光强为 I=I1+I2+2sqrt(I1I2)cos 当当I1=I2=I0时时 I=2I0(1+cos)=4 I0cos2(/2)=4 I0cos2(/)当当 =k=k时,时,I=II=Imaxmax=4=4 I0当当 =(2k-1)/2=(2k-1)/2时,时,I=I=I Iminmin=0=08、杨氏双缝干涉的应用、杨氏双缝干涉的应用(1)测量波长:)测量波长:(2)测量薄膜的厚度和折射率:测量薄膜的厚度和折射率:(3)长度的测量:微小改变量。)长度的测量:微小改变量。例例8-1、求光波的波长、求光波的波长在杨氏双缝干涉实验中,已知双缝间距为在杨氏双缝干涉实
18、验中,已知双缝间距为0.20mm0.20mm,屏和缝相距,屏和缝相距0.50m0.50m,测得条纹宽度为测得条纹宽度为1.50mm1.50mm,求入射光的波长。求入射光的波长。解:由杨氏双缝干涉条纹间距公式解:由杨氏双缝干涉条纹间距公式 x=D/2a可以得到光波的波长为可以得到光波的波长为 =x2a/D代入数据,得代入数据,得=1.5010-30.2010-3/0.50 =6.0010-7m =600nm当双缝干涉装置的一条狭缝后面盖上折射率为当双缝干涉装置的一条狭缝后面盖上折射率为n n=1.58=1.58的云的云母片时,观察到屏幕上干涉条纹移动了母片时,观察到屏幕上干涉条纹移动了9 9个条
19、纹间距,已知个条纹间距,已知波长波长=5500A=5500A0 0,求云母片的厚度。求云母片的厚度。例例8-2、根据条纹移动求缝后所放介质片的厚度、根据条纹移动求缝后所放介质片的厚度解:没有盖云母片时,零级明条纹在解:没有盖云母片时,零级明条纹在O O点;当点;当S S1 1缝后盖上云母片缝后盖上云母片后,光线后,光线1 1的光程增大。由于零级明条纹所对应的光程差为零,的光程增大。由于零级明条纹所对应的光程差为零,所以这时零级明条纹只有上移才能使光程差为零。依题意,所以这时零级明条纹只有上移才能使光程差为零。依题意,S S1 1缝盖上云母片后,零级明条纹由缝盖上云母片后,零级明条纹由O O点移
20、动原来的第九级明条纹位点移动原来的第九级明条纹位置置P P点,当点,当xD时,时,S S1 1发出的光可以近似看作垂直通过云母片,发出的光可以近似看作垂直通过云母片,光程增加为光程增加为(r1-h+nh)-r1=(n-1)h,从而在从而在O O点有点有 (n-1)h=k,k=9所以所以 h=k/(/(n-1)=9550010-1)=9550010-10-10/(1.58-1)/(1.58-1)=8.5310 =8.5310-6-6m mr2r1OPxdS2S1情况情况1:n1n2n2n3 无无无无没有没有情况情况3:n1n3 有有无无有有情况情况4:n1n2n3 无无 有有有有产生半波损失的条
21、件:产生半波损失的条件:光从光疏介质射向光密介光从光疏介质射向光密介质,即质,即n1n2;半波损失只发生在反射半波损失只发生在反射光中;光中;对于三种不同的媒质,对于三种不同的媒质,两反射光之间有无半波损两反射光之间有无半波损失的情况如下:失的情况如下:n1n2n2n3 无无n1n3 有有n1n2n3 有有一、薄膜干涉一、薄膜干涉薄膜干涉属于分振幅法薄膜干涉属于分振幅法1、等倾干涉:、等倾干涉:实验装置实验装置在空气(或真空)中放入上在空气(或真空)中放入上下表面平行,厚度为下表面平行,厚度为 e 的均的均匀介质匀介质 n光光a与光与光 b的光程差为:的光程差为:光光a有半波损失。有半波损失。
22、nCABeDbari8-3 8-3 分振幅干涉分振幅干涉由折射定律和几何关系可得出:由折射定律和几何关系可得出:代入代入得出:得出:结论:结论:相同的入射角相同的入射角对应同一级条纹。因此,对应同一级条纹。因此,称它为称它为薄膜等倾干涉。薄膜等倾干涉。光光a与光与光b相遇在无穷远,相遇在无穷远,或者在透镜的焦平面上或者在透镜的焦平面上观察它们的相干结果,观察它们的相干结果,所以称它为所以称它为定域干涉。定域干涉。nCABeDbari应用:应用:测定薄膜的厚度;测定薄膜的厚度;测定光的波长;测定光的波长;例例83如图所示,在折射率为如图所示,在折射率为1.50的的平板玻璃表面有一层厚度为平板玻璃
23、表面有一层厚度为300nm,折折射率为射率为1.22的均匀透明油膜,用白光垂的均匀透明油膜,用白光垂直射向油膜,问:直射向油膜,问:1)哪些波长的可见光在反射光中产生哪些波长的可见光在反射光中产生相长干涉相长干涉?2)若要使反射光中若要使反射光中=550nm的光产生相的光产生相消干涉,油膜的最小厚度为多少消干涉,油膜的最小厚度为多少?解:解:(1)因反射光之间没有半波损失,因反射光之间没有半波损失,由垂直入射由垂直入射i=0,得反射光相长干涉的得反射光相长干涉的条件为条件为k=1时时 红光红光 k=2时时 故反射中红光产故反射中红光产生相长干涉。生相长干涉。紫外紫外(2)由反射相消干涉条件为:
24、由反射相消干涉条件为:显然显然k=0所产生对应的厚度最小,即所产生对应的厚度最小,即 干涉条纹定域干涉条纹定域在膜附近。条在膜附近。条纹形状由膜的纹形状由膜的等厚点轨迹所等厚点轨迹所决定。决定。2、等厚干涉、等厚干涉劈尖干涉的实验装置劈尖干涉的实验装置明纹中心明纹中心暗纹中心暗纹中心干涉条件干涉条件空气劈尖相邻明条纹对应的厚度差:空气劈尖相邻明条纹对应的厚度差:若劈尖间夹有折射率为若劈尖间夹有折射率为 n 的介质,则:的介质,则:劈尖相邻级次条纹对应的薄膜厚度差为膜内光波长的一半。劈尖相邻级次条纹对应的薄膜厚度差为膜内光波长的一半。特点特点劈尖干涉是等厚干涉劈尖干涉是等厚干涉劈尖的等厚干涉条纹
25、是一系列等间距、明暗劈尖的等厚干涉条纹是一系列等间距、明暗相间的平行于棱边的直条纹相间的平行于棱边的直条纹。薄膜厚度的测量薄膜厚度的测量应用应用薄膜厚度的测定薄膜厚度的测定测定光学元件表面的平整度测定光学元件表面的平整度劈尖表面附近形成的是一系列与棱边平行劈尖表面附近形成的是一系列与棱边平行的、明暗相间等距的直条纹。的、明暗相间等距的直条纹。楔角愈小,干涉条纹分布就愈稀疏。楔角愈小,干涉条纹分布就愈稀疏。当用白光照射时,将看到由劈尖边缘逐渐当用白光照射时,将看到由劈尖边缘逐渐分开的彩色直条纹。分开的彩色直条纹。劈尖相邻级次条纹对应的薄膜厚度差为膜内光波长的一半。劈尖相邻级次条纹对应的薄膜厚度差
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八章波动光学 1 第八 波动 光学
限制150内