教育专题:11空间几何体的结构.ppt
《教育专题:11空间几何体的结构.ppt》由会员分享,可在线阅读,更多相关《教育专题:11空间几何体的结构.ppt(111页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1 1.1 空间几何体的结构空间几何体的结构 第一课时第一课时空间几何体及棱柱、棱锥的结构特征空间几何体及棱柱、棱锥的结构特征问题提出问题提出 1.1.在平面几何中,我们认识了三角形,在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形正方形,矩形,菱形,梯形,圆,扇形等平面图形等平面图形.那么对空间中各种各样的几那么对空间中各种各样的几何体,我们如何认识它们的结构特征?何体,我们如何认识它们的结构特征?2.2.对空间中不同形状、大小的几何体对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?我们如何理解它们的联系和区别?知识探究(一):知识探究(一):空间几何体的类
2、型空间几何体的类型思考思考1 1:在我们周围存在着各种各样的物在我们周围存在着各种各样的物体,它们都占据着空间的一部分体,它们都占据着空间的一部分.如果我如果我们只考虑这些物体的形状和大小,而不们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的考虑其他因素,那么由这些抽象出来的空间图形就叫做空间图形就叫做空间几何体空间几何体.你能列举那你能列举那些空间几何体的实例?些空间几何体的实例?思考思考2 2:观察下列图片,你知道这图片在观察下列图片,你知道这图片在几何中分别叫什么名称吗?几何中分别叫什么名称吗?思考思考3 3:如果将这些几何体进行适当分类,如果将这些几何体进行适当分类
3、,你认为可以分成那几种类型?你认为可以分成那几种类型?思考思考4 4:图图(2 2)()(5 5)()(7 7)()(9 9)()(1313)()(1414)()(1 15 5)()(1616)有何共同特点?这些几何体可)有何共同特点?这些几何体可以统一叫什么名称?以统一叫什么名称?思考思考5 5:图图(1 1)()(3 3)()(4 4)()(6 6)()(8 8)()(1010)()(1111)()(1212)有何共同特点?这些几何体可)有何共同特点?这些几何体可以统一叫什么名称?以统一叫什么名称?多面体多面体旋转体旋转体思考思考6 6:一般地,怎样定义多面体?围一般地,怎样定义多面体?围
4、成多面体的各个多边形,相邻两个多边成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶形的公共边,以及这些公共边的公共顶点分别叫什么名称?点分别叫什么名称?面面顶点顶点棱由若干个平面由若干个平面多边形围成的多边形围成的几何体叫做几何体叫做多多面体面体.思考思考7 7:一般地,怎样定义旋转体?一般地,怎样定义旋转体?轴由一个平面图形绕它所在平面内的由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体一条定直线旋转所形成的封闭几何体叫做叫做旋转体旋转体知识探究(二):知识探究(二):棱柱的结构特征棱柱的结构特征思考思考1 1:我们把下面的多面体取名为棱我们把下面的多面体取
5、名为棱柱,你能说一说棱柱的结构有那些特征柱,你能说一说棱柱的结构有那些特征吗?据此你能给棱柱下一个定义吗?吗?据此你能给棱柱下一个定义吗?有两个面互相平行,其余各面都是四边有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边都互相形,每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做平行,由这些面围成的多面体叫做棱柱棱柱.思考思考2 2:为了研究方便,我们把棱柱中两个互为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的相平行的面叫做棱柱的底面底面,其余各面叫做,其余各面叫做棱柱的棱柱的侧面侧面,相邻侧面的公共边叫做棱柱的,相邻侧面的公共边叫做棱柱的侧棱侧棱,侧面与底面的公
6、共顶点叫做棱柱的,侧面与底面的公共顶点叫做棱柱的顶顶点点.你能指出上面棱柱的底面、侧面、侧棱、你能指出上面棱柱的底面、侧面、侧棱、顶点吗?顶点吗?侧面侧面顶点顶点侧棱底面底面思考思考3 3:下列多面体都是棱柱吗?如何在下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示名称上区分这些棱柱?如何用符号表示?ABCDEA1B1C1D1E1ABCA1B1C1ABCDA1B1C1D1ABCDA1B1C1D1思考思考4 4:棱柱上、下两个底面的形状大小棱柱上、下两个底面的形状大小如何?各侧面的形状如何?如何?各侧面的形状如何?两底面是全等的多边形两底面是全等的多边形,各侧面都是平行四边形各侧面
7、都是平行四边形思考思考5 5:有两个面互相平行,其余各面都有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?是平行四边形的多面体一定是棱柱吗?思考思考6 6:一个棱柱至少有几个侧面?一个一个棱柱至少有几个侧面?一个N N棱柱分别有多少个底面和侧面?有多少棱柱分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?条侧棱?有多少个顶点?知识探究(三):知识探究(三):棱锥的结构特征棱锥的结构特征思考思考1 1:我们把下面的多面体取名为棱我们把下面的多面体取名为棱锥,你能说一说棱锥的结构有那些特征锥,你能说一说棱锥的结构有那些特征吗?据此你能给棱锥下一个定义吗?吗?据此你能给棱锥下一个定义
8、吗?有一个面是多边形,其余各面都是有有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围一个公共顶点的三角形,由这些面围成的多面体叫做成的多面体叫做棱锥棱锥.思考思考2 2:参照棱柱的说法,棱锥的底面、参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?侧面、侧棱、顶点分别是什么含义?侧面侧面顶点顶点侧棱底面底面多边形面叫做棱锥的多边形面叫做棱锥的底面底面,有公共顶点的各三角,有公共顶点的各三角形面叫做棱锥的形面叫做棱锥的侧面侧面,相邻侧面的公共边叫做棱,相邻侧面的公共边叫做棱锥的锥的侧棱侧棱,各侧面的公共顶点叫做棱锥的,各侧面的公共顶点叫做棱锥的顶点顶点.思考思考3 3:
9、下列多面体都是棱锥吗?如何在下列多面体都是棱锥吗?如何在名称上区分这些棱锥?如何用符号表示名称上区分这些棱锥?如何用符号表示?ABCSSABCDSABCEFD思考思考4 4:一个棱锥至少有几个面?一个一个棱锥至少有几个面?一个N N棱锥有分别有多少个底面和侧面?有多棱锥有分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?少条侧棱?有多少个顶点?至少有至少有4 4个面;个面;1 1个底面,个底面,N N个侧个侧面,面,N N条侧棱,条侧棱,1 1个顶点个顶点.思考思考5 5:用一个平行于棱锥底面的平面去用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何?截棱锥,截面与底面的形状关系如
10、何?相似多边形相似多边形理论迁移理论迁移例例1 1 如图,截面如图,截面BCEFBCEF将长方体分割成将长方体分割成两部分,这两部分是否为棱柱?两部分,这两部分是否为棱柱?ABCDA1B1C1D1EF例例2 2 一个三棱柱可以分割成几个三棱一个三棱柱可以分割成几个三棱锥?锥?ACA1BB1C1A1BB1C1AA1BC1ACBC1作业:作业:P8P8习题习题1.1A1.1A组:组:1 1题(题(1 1)()(2 2)()(3 3)(做在上书)(做在上书);第二课时第二课时棱台、圆柱、圆锥、圆台的结构特征棱台、圆柱、圆锥、圆台的结构特征问题提出问题提出 1.1.棱柱、棱锥的图形结构分别有哪棱柱、棱
11、锥的图形结构分别有哪几个特征?几个特征?2.2.在空间几何体中,其他一些图形在空间几何体中,其他一些图形各有什么结构特征呢?各有什么结构特征呢?知识探究(一):知识探究(一):棱台的结构特征棱台的结构特征思考思考1 1:用一个平行于棱锥底面的平面用一个平行于棱锥底面的平面去截棱锥,截面与底面之间的部分形成去截棱锥,截面与底面之间的部分形成另一个多面体,这样的多面体叫做另一个多面体,这样的多面体叫做棱台棱台.那么棱台有哪些结构特征?那么棱台有哪些结构特征?有两个面是互相平行的相有两个面是互相平行的相似多边形,其余各面都是似多边形,其余各面都是梯形,每相邻两个梯形的梯形,每相邻两个梯形的公共腰的延
12、长线共点公共腰的延长线共点.思考思考2 2:参照棱柱的说法,棱台的底面、参照棱柱的说法,棱台的底面、侧面、侧棱、顶点分别是什么含义?侧面、侧棱、顶点分别是什么含义?原棱锥的底面和截面分别叫做棱台的原棱锥的底面和截面分别叫做棱台的下底面和下底面和上底面上底面,其余各面叫做棱台的,其余各面叫做棱台的侧面侧面,相邻侧面的公,相邻侧面的公共边叫做棱台的共边叫做棱台的侧棱,侧棱,侧面与底面的公共顶点叫做侧面与底面的公共顶点叫做棱台的棱台的顶点顶点.侧面侧面上底面上底面侧棱下底面下底面顶点顶点思考思考3 3:下列多面体一定是棱台吗?如何下列多面体一定是棱台吗?如何判断?判断?思考思考4 4:三棱台、四棱台
13、、五棱台、三棱台、四棱台、五棱台、分别是什么含义?分别是什么含义?知识探究(二):知识探究(二):圆柱的结构特征圆柱的结构特征思考思考1 1:如图所示的空间几何体叫做如图所示的空间几何体叫做圆圆柱,柱,那么圆柱是怎样形成的呢?那么圆柱是怎样形成的呢?以矩形的一边所在直线为旋转轴,其以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体余三边旋转形成的面所围成的旋转体.思考思考2 2:在圆柱的形成中,旋转轴叫做圆柱的在圆柱的形成中,旋转轴叫做圆柱的轴轴,垂直于轴的边旋转而成的圆面叫做圆柱的垂直于轴的边旋转而成的圆面叫做圆柱的底面底面,平行于轴的边旋转而成的曲面叫做圆柱的平行于轴的边旋转
14、而成的曲面叫做圆柱的侧面侧面,平行于轴的边在旋转中的任何位置叫做圆柱侧面平行于轴的边在旋转中的任何位置叫做圆柱侧面的的母线母线.你能结合图形正确理解这些概念吗?你能结合图形正确理解这些概念吗?侧面侧面轴轴母线底面底面母线思考思考3 3:平行于圆柱底面的截面,经过平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别是什么图圆柱任意两条母线的截面分别是什么图形?形?思考思考4 4:经过圆柱的轴的截面称为经过圆柱的轴的截面称为轴截面轴截面,你能说出圆柱的轴截面有哪些基本特征你能说出圆柱的轴截面有哪些基本特征吗?吗?知识探究(三):知识探究(三):圆锥的结构特征圆锥的结构特征思考思考1 1:将一个直角
15、三角形以它的一条直将一个直角三角形以它的一条直角边为轴旋转一周,那么其余两边旋转角边为轴旋转一周,那么其余两边旋转形成的面所围成的旋转体是一个什么样形成的面所围成的旋转体是一个什么样的空间图形?你能画出其直观图吗?的空间图形?你能画出其直观图吗?思考思考2 2:以直角三角形的一条直角边所在以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做所围成的旋转体叫做圆锥,圆锥,那么如何定那么如何定义圆锥的轴、底面、侧面、母线?义圆锥的轴、底面、侧面、母线?旋转轴叫做圆锥的旋转轴叫做圆锥的轴轴,垂直于轴的边旋转而,垂直于轴的边旋转而成的圆面叫
16、做圆锥的成的圆面叫做圆锥的底面底面,斜边旋转而成的,斜边旋转而成的曲面叫做圆锥的曲面叫做圆锥的侧面侧面,斜边在旋转中的任何,斜边在旋转中的任何位置叫做圆锥侧面的位置叫做圆锥侧面的母线母线.侧面侧面顶点顶点母线底面底面母线轴思考思考3 3:经过圆锥任意两条母线的截面是经过圆锥任意两条母线的截面是什么图形?什么图形?思考思考4 4:经过圆锥的轴的截面称为经过圆锥的轴的截面称为轴截面轴截面,你能说出圆锥的轴截面有哪些基本特征你能说出圆锥的轴截面有哪些基本特征吗?吗?思考思考1:1:用一个平行于圆锥底面的平面去用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的部分叫做截圆锥,截面与底面之间的部分叫做
17、圆圆台台.圆台可以由什么平面图形旋转而形成圆台可以由什么平面图形旋转而形成?知识探究(四):知识探究(四):圆台的结构特征圆台的结构特征思考思考2:2:与圆柱和圆锥一样,圆台也有轴、与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线,它们的含义分别如底面、侧面、母线,它们的含义分别如何?何?侧面侧面上底面上底面下底面下底面母线轴思考思考3:3:经过圆台任意两条母线的截面是经过圆台任意两条母线的截面是什么图形?轴截面有哪些基本特征?什么图形?轴截面有哪些基本特征?oo思考思考4:4:设圆台的上、下底面圆圆心分别设圆台的上、下底面圆圆心分别为为OO、O O,过线段,过线段OOOO的中点作平行于的中点作
18、平行于底面的截面称为圆台的底面的截面称为圆台的中截面中截面,那么圆,那么圆台的上、下底面和中截面的面积有什么台的上、下底面和中截面的面积有什么关系?关系?AB图1AB图2AB图3 例例1 1 将下列平面图形绕直线将下列平面图形绕直线ABAB旋转旋转一周,所得的几何体分别是什么?一周,所得的几何体分别是什么?理论迁移理论迁移例例2 2 在直角三角形在直角三角形ABCABC中,已知中,已知AC=2AC=2,BC=BC=,以直线,以直线ACAC为为轴将轴将ABCABC旋转一周得到一个圆锥,求经旋转一周得到一个圆锥,求经过该圆锥任意两条母线的截面三角形的过该圆锥任意两条母线的截面三角形的面积的最大值面
19、积的最大值.ABCABCD 作业作业:P P7 7练习:练习:1 1,2.2.P P9 9习题习题1.1A1.1A组:组:2.2.第三课时第三课时球、简单组合体的结构特征球、简单组合体的结构特征问题提出问题提出1.1.棱柱、棱锥、棱台是三个基本的多面棱柱、棱锥、棱台是三个基本的多面体,圆柱、圆锥、圆台是三个基本的旋体,圆柱、圆锥、圆台是三个基本的旋转体,其中棱柱和圆柱统称为转体,其中棱柱和圆柱统称为柱体柱体,棱,棱锥和圆锥统称为锥和圆锥统称为锥体锥体,棱台和圆台统称,棱台和圆台统称为为台体台体.除此之外,在我们的生活中还有除此之外,在我们的生活中还有一个最常见的空间几何体是什么?一个最常见的空
20、间几何体是什么?2.2.球是多面体还是旋转体?球有什么结球是多面体还是旋转体?球有什么结构特征?构特征?思考思考1 1:现实生活中有哪些物体是球状几现实生活中有哪些物体是球状几何体?何体?知识探究(一):知识探究(一):球的结构特征球的结构特征思考思考2:2:从旋转的角度分析,球是由什么从旋转的角度分析,球是由什么图形绕哪条直线旋转而成的?图形绕哪条直线旋转而成的?以半圆的直径所在直线为旋转轴,半圆以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做面旋转一周形成的旋转体叫做球体球体,简,简称称球球.思考思考3:3:半圆的圆心、半径、直径,在球半圆的圆心、半径、直径,在球体中分别叫做球
21、的体中分别叫做球的球心球心、球的、球的半径半径、球、球的的直径直径,球的外表面叫做,球的外表面叫做球面球面.那么球的那么球的半径还可怎样理解?半径还可怎样理解?O O直径直径半径半径球心球心球面上的点到球面上的点到球心的距离球心的距离 思考思考4:4:用一个平面去截一个球,截面是用一个平面去截一个球,截面是什么图形?什么图形?O思考思考5:5:设球的半径为设球的半径为R R,截面圆半径为,截面圆半径为r r,球心与截面圆圆心的距离为,球心与截面圆圆心的距离为d d,则,则R R、r r、d d三者之间的关系如何?三者之间的关系如何?POORrdr=R-d知识探究(二):知识探究(二):简单组合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 11 空间 几何体 结构
限制150内