探索三角形全等的条件(二) (2).ppt
《探索三角形全等的条件(二) (2).ppt》由会员分享,可在线阅读,更多相关《探索三角形全等的条件(二) (2).ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、探索三角形全等的条件(二二)复习复习:在括号内填写适当的理由在括号内填写适当的理由 1、已知、已知AB=DC,AC=DB,那么那么A与与D相等吗?相等吗?AB=DC()AC=DB()BC=CB()ABCDCB()A=DABCD已知已知已知已知公共边公共边SSS(全等三角形的对应角相等)全等三角形的对应角相等)解:在解:在ABC和和DCB中中 2、已知、已知AC=AD,BC=BD,那么那么AB是是DAC的平分线的平分线.证明证明:AC=AD()BC=BD()AB=AB()ABCABD()1=2全等三角形的对应角相等ABCD12()已知已知已知已知公共边公共边SSSAB是是DAC的平分线的平分线
2、小明踢球时不慎把一小明踢球时不慎把一块三角形玻璃打碎为两块三角形玻璃打碎为两块块,他他是否可以只带其中是否可以只带其中的一块碎片的一块碎片到商店去到商店去,就就能配一块能配一块与原来一样的与原来一样的三角形三角形玻璃呢玻璃呢?如果可以如果可以,带哪块去合适呢带哪块去合适呢?为什么为什么?我们知道我们知道:如果给出一个三角如果给出一个三角形三条边的长度形三条边的长度,那么因此得到那么因此得到的三角形都是全等的三角形都是全等.如果已知一如果已知一个三角形的两角及一边个三角形的两角及一边,那么有那么有几种可能的情况呢几种可能的情况呢?每种情况下得到的三角形都每种情况下得到的三角形都全等吗全等吗?1、
3、角、角.边边.角角;2、角、角.角角.边边做一做1、角、角.边边.角角;若三角形的两个内角分别是若三角形的两个内角分别是60和和80它们所夹的边为它们所夹的边为2cm,你能画出这个三角形吗你能画出这个三角形吗?2cm6080 你画的三角形与同伴画的一定全你画的三角形与同伴画的一定全等吗等吗?60802、角、角.角角.边边若三角形的两个内角分别是若三角形的两个内角分别是60和和45,且,且45所对的边为所对的边为3cm,你能画出这个三角形吗你能画出这个三角形吗?60456045分析:分析:这里的条件与这里的条件与1中的条件有什中的条件有什么相同点与不同点?你能将它么相同点与不同点?你能将它转化为
4、转化为1中的条件吗?中的条件吗?75 两角和它们的夹边对应相两角和它们的夹边对应相等的两个三角形全等等的两个三角形全等,简写,简写成成“角边角角边角”或或“ASA”两角和其中一角的对边对两角和其中一角的对边对应相等的两个三角形全等应相等的两个三角形全等,简写成简写成“角角边角角边”或或“AAS”1、如图,已知、如图,已知AB=DE,A=D,,B=E,则则ABC DEF的理由是:的理由是:2、如图,已知、如图,已知AB=DE,A=D,,C=F,则,则ABC DEF的理由是:的理由是:ABCDEF角边角(角边角(ASA)角角边(角角边(AAS)3、如图,在、如图,在ABC 中中,B=C,AD是是B
5、AC的的角平分线,那么角平分线,那么AB=AC吗?为什么?吗?为什么?1 2ABCD1 2ABCD证明证明:AD是是BAC的角平分线的角平分线 12(角平分线定义角平分线定义)在在ABD与与ACD中中 1=2 (已证)(已证)B=C (已知)(已知)AD=AD (公共边)(公共边)ABDACD(ASA)AB=AC(全等三角形对应边相等全等三角形对应边相等)(1)图中的两个三角形全等吗图中的两个三角形全等吗?请说明理由请说明理由.全等全等,因为两角和其中一角的对边对应相等因为两角和其中一角的对边对应相等的两个三角形全等的两个三角形全等.ABCD(已知)(已知)(公共边)如图,如图,ABCD,AD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 探索三角形全等的条件二 2 探索 三角形 全等 条件
限制150内