课件_10.6一次函数的应用.pptx
《课件_10.6一次函数的应用.pptx》由会员分享,可在线阅读,更多相关《课件_10.6一次函数的应用.pptx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、10.6一次函数的应用山东省昌乐第一中学山东省昌乐第一中学主讲人:赵振华主讲人:赵振华1、看左图,结合、看左图,结合10.5一次函数一次函数与一元一次不等式求当与一元一次不等式求当300y900时,对应时,对应x的取值范围的取值范围?2、再再看看左左图,某航空公司规定,旅图,某航空公司规定,旅客所携带行李的质量客所携带行李的质量(kg)与其运费与其运费(元元)由由左左图所示的一次函数图象确图所示的一次函数图象确定,如果旅客缴纳的运费在定,如果旅客缴纳的运费在300元到元到900之间,那么你能否猜测出行李的之间,那么你能否猜测出行李的质量范围?质量范围?分析:分析:1到到2的转化,即数学理论到的
2、转化,即数学理论到现实生活的转化,即数学应用。现实生活的转化,即数学应用。为有源头活水来-理论转化实际学习的目的在于应用,日常生活学习的目的在于应用,日常生活中,工农业生产及商业活动中,中,工农业生产及商业活动中,方案的最优化问题、最值问题、方案的最优化问题、最值问题、以及盈利最大、用料最省、设计以及盈利最大、用料最省、设计最佳等都与函数有关。这节课让最佳等都与函数有关。这节课让我们共同走进我们共同走进10.6一次函数的应一次函数的应用,领略数学的奇妙与魅力。用,领略数学的奇妙与魅力。学学 习习 目目 标标 1、通过对实际问题分析,体会一次函数是刻画现实世、通过对实际问题分析,体会一次函数是刻
3、画现实世界数量关系的模型界数量关系的模型.2、能用一次函数解决简单的实际问题,感悟数形结合、能用一次函数解决简单的实际问题,感悟数形结合、转化和建模的数学思想,增强应用意识,提高分析问转化和建模的数学思想,增强应用意识,提高分析问题和解决问题的能力题和解决问题的能力.温故知新-化繁为简之前学过的应用题主要有列一元一次方程解应用题、列分式方程解应用之前学过的应用题主要有列一元一次方程解应用题、列分式方程解应用题、列一元一次不等式解应用题。应用题基本题型你记得有哪些呢?题、列一元一次不等式解应用题。应用题基本题型你记得有哪些呢?销售问题销售问题 工程问题工程问题路程问题路程问题 积分问题积分问题比
4、较问题比较问题 车费问题车费问题增减问题增减问题 方案选择方案选择。(中考重点)。(中考重点)数学的魅力与奇妙:数学的魅力与奇妙:题异,理相通,同理可得。题异,理相通,同理可得。化繁为简,解决实际问题。化繁为简,解决实际问题。应用于生活,服务于生活。应用于生活,服务于生活。学 以 致 用练习:如图,李大爷要围成一个矩形菜园练习:如图,李大爷要围成一个矩形菜园ABCD,菜园的,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为为24米设米设BC边的长为边的长为x米,米,AB边的长为边的长为y米,则米,则y与与x之之间的函数关系式是?间的函
5、数关系式是?y0.5x+12(0 x24)典 例 剖 析例例1:某林场计划购买甲、乙两种树苗:某林场计划购买甲、乙两种树苗共共3万株,甲种树苗每株万株,甲种树苗每株25元,乙种树元,乙种树苗每株苗每株40元相关资料表明:甲、乙元相关资料表明:甲、乙两种树苗的成活率分别为两种树苗的成活率分别为80%、90%(1)若购买这两种树苗共用去)若购买这两种树苗共用去90万元,万元,则甲、乙两种树苗各购买多少株?则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低)若要使这批树苗的总成活率不低于于85%,则甲种树苗至多购买多少株,则甲种树苗至多购买多少株?(3)在()在(2)的条件下,应如何选
6、购)的条件下,应如何选购树苗,使购买树苗的费用最低?并求树苗,使购买树苗的费用最低?并求出最低费用出最低费用分析:(分析:(1)根据关键语)根据关键语“甲、甲、乙共乙共3万株万株”和和“购买两种树购买两种树苗共用苗共用90万元万元”,列方程组,列方程组求解求解(2)找到关键语)找到关键语“树苗成活树苗成活率不低于率不低于85%”,进而找所求,进而找所求量的关系,列不等式求甲树量的关系,列不等式求甲树苗的取值范围苗的取值范围(3)根据题意列出购买两种)根据题意列出购买两种树苗的费用之和与甲种树苗树苗的费用之和与甲种树苗的函数关系式,根据一次函的函数关系式,根据一次函数的性质求出最低费用数的性质求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件 _10 一次 函数 应用
限制150内