23 数学归纳法(1).ppt
《23 数学归纳法(1).ppt》由会员分享,可在线阅读,更多相关《23 数学归纳法(1).ppt(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2.3 2.3数学归纳法数学归纳法(1)(1)对于某类事物,由它的一些特殊事对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般例或其全部可能情况,归纳出一般结论的推理方法,叫归纳法。结论的推理方法,叫归纳法。归纳法归纳法 完全归纳法完全归纳法不完全归纳法不完全归纳法由特殊由特殊 一般一般 特点特点:a2=a1+da3=a1+2da4=a1+3dan=a1+(n-1)d如何证明如何证明:1+3+5+(2n-1)=n2 (nN*)二、数学归纳法的概念:二、数学归纳法的概念:证明某些与自然数有关的数学题证明某些与自然数有关的数学题,可用下列方法来可用下列方法来证明它们的正确性证明它们的正
2、确性:(1)(1)验证验证当当n n取第一个值取第一个值n n0 0(例如例如n n0 0=1)=1)时命题成立时命题成立,(2)(2)假设假设当当n=n=k(kk(k N N*,k k n n0 0)时命题成立时命题成立,证明当证明当n=k+1n=k+1时命题也成立时命题也成立完成这两步,就可以断定这个命题对从完成这两步,就可以断定这个命题对从n n0 0开始的所开始的所有正整数有正整数n n都成立。这种证明方法叫做都成立。这种证明方法叫做数学归纳法。数学归纳法。验证验证n=nn=n0 0时命时命题成立题成立若若当当n=k(n=k(k k n n0 0)时命题成立时命题成立,证明当证明当n=
3、k+1n=k+1时命题也成立时命题也成立命题对从命题对从n n0 0开始的所开始的所有正整数有正整数n n都成立。都成立。所以所以n=k+1时结论也成立时结论也成立那么那么求证求证注意注意 1 1.用数学归纳法进行证明时用数学归纳法进行证明时,要分两个步要分两个步骤骤,两个步骤缺一不可两个步骤缺一不可.2(1)(1)(归纳奠基归纳奠基)是递推的基础是递推的基础.找准找准n n0 0(2)(2)(归纳递推归纳递推)是递推的依据是递推的依据n nk k时时命题成立作为必用的条件运用,而命题成立作为必用的条件运用,而n nk+1k+1时情况则有待时情况则有待利用假设利用假设及已知的定义、公式、及已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 23 数学 归纳法
限制150内