CH.9 因子分析.ppt
《CH.9 因子分析.ppt》由会员分享,可在线阅读,更多相关《CH.9 因子分析.ppt(87页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九章因子分析第九章因子分析FactorAnalysis1 1 1 引言引言 因子分析(factor analysis)是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称为因子。例如,在企业形象或品牌形象的研究中,消费者可以通过一个有24个指标构成的评价体系,评价百货商场的24个方面的优劣。2 但消费者主要关心的是三个方面,即商店的环境、商店的服务和商品的价格。因子分析方法可以通过24个变量,找出反映商店环
2、境、商店服务水平和商品价格的三个潜在的因子,对商店进行综合评价。而这三个公共因子可以表示为:称 是不可观测的潜在因子。24个变量共享这三个因子,但是每个变量又有自己的个性,不被包含的部分,称为特殊因子。3注:注:因子分析与回归分析不同,因子分析中的因因子分析与回归分析不同,因子分析中的因子是一个比较抽象的概念,而回归因子有非常明子是一个比较抽象的概念,而回归因子有非常明确的实际意义;确的实际意义;主成分分析分析与因子分析也有不同,主成主成分分析分析与因子分析也有不同,主成分分析仅仅是变量变换,而因子分析需要构造因分分析仅仅是变量变换,而因子分析需要构造因子模型。子模型。主成分分析主成分分析:原
3、始变量的线性组合表示新的原始变量的线性组合表示新的综合变量,即主成分;综合变量,即主成分;因子分析:潜在的假想变量和随机影响变因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。量的线性组合表示原始变量。42因子分析模型因子分析模型一、数学模型一、数学模型一、数学模型一、数学模型 设 个变量,如果表示为5 称为 公共因子,是不可观测的变量,他们的系数称为因子载荷。是特殊因子,是不能被前m个公共因子包含的部分。并且满足:即不相关;即 互不相关,方差为1。6即互不相关,方差不一定相等,。7用矩阵的表达方式8二、因子分析模型的性质 1、原始变量X的协方差矩阵的分解 D的主对角线上的元素值越
4、小,则公共因子共享的成分越多。92、模型不受计量单位的影响将原始变量X做变换X*=CX,这里Cdiag(c1,c2,cn),ci0。10113、因子载荷不是惟一的设T为一个pp的正交矩阵,令A*=AT,F*=TF,则模型可以表示为且满足条件因子模型的条件12 三、三、因子载荷矩阵中的几个统计特征因子载荷矩阵中的几个统计特征 1 1、因子载荷、因子载荷a aijij的统计意义的统计意义 因子载荷 是第i个变量与第j个公共因子的相关系数模型为 在上式的左右两边乘以,再求数学期望 根据公共因子的模型性质,有 (载荷矩阵中第i行,第j列的元素)反映了第i个变量与第j个公共因子的相关重要性。绝对值越大,
5、相关的密切程度越高。13 2 2、变量共同度的统计意义、变量共同度的统计意义定定义义:变量 的共同度是因子载荷矩阵的第i行的元素的平方和。记为统计意义统计意义:两边求方差 所有的公共因子和特殊因子对变量 的贡献为1。如果 非常靠近1,非常小,则因子分析的效果好,从原变量空间到公共因子空间的转化性质好。14 3 3、公共因子、公共因子 方差贡献的统计意义方差贡献的统计意义因子载荷矩阵中各列元素的平方和 称为所有的 对 的方差贡献和。衡量的相对重要性。15 3 3 因子载荷矩阵的估计方法因子载荷矩阵的估计方法设随机向量设随机向量的均值为的均值为 ,协方差,协方差为为 ,为为 的特征根,的特征根,为
6、对应为对应的的标准化特征向量,则标准化特征向量,则(一)主成分分析法(一)主成分分析法16上式上式给出的给出的 表达式是精确的,然而,它实际上是毫表达式是精确的,然而,它实际上是毫无价值的,因为我们的目的是寻求用少数几个公共因子无价值的,因为我们的目的是寻求用少数几个公共因子解释,故略去后面的解释,故略去后面的p-mp-m项的贡献,有项的贡献,有17上式有一个假定,模型中的特殊因子是不重要的,因而从 的分解中忽略了特殊因子的方差。18注:残差矩阵其中S为样本的协方差矩阵。19 (二)主因子法(二)主因子法主因子方法是对主成分方法的修正,假定我们首先对变量进行标准化变换。则R=AA+DR*=AA
7、=R-D称R*为约为约相关矩阵,相关矩阵,R*对角线上的元素是对角线上的元素是,而不是1。20直接求R*的前p个特征根和对应的正交特征向量。得如下的矩阵:21 当特殊因子当特殊因子 的方差不为且的方差不为且已知的,问题非常好解决。2223 在实际的应用中,个性方差矩阵一般都是未知的,在实际的应用中,个性方差矩阵一般都是未知的,可以通过一组样本来估计。可以通过一组样本来估计。估估估估计计计计的的的的方法有如下几种方法有如下几种方法有如下几种方法有如下几种:首先,求 的初始估计值,构造出1)取 ,在这个情况下主因子解与主成分解等价;2)取 ,为xi与其他所有的原始变量xj的复相关系数的平方,即xi
8、对其余的p-1个xj的回归方程的判定系数,这是因为xi 与公共因子的关系是通过其余的p-1个xj 的线性组合联系起来的;24 2)取 ,这意味着取xi与其余的xj的简单相关系数的绝对值最大者;4)取 ,其中要求该值为正数。5)取 ,其中 是 的对角元素。25例例假定某地固定资产投资率假定某地固定资产投资率,通货膨胀率通货膨胀率,失业率失业率,相关系数矩阵为,相关系数矩阵为试用主成分分析法求因子分析模型。试用主成分分析法求因子分析模型。28特征根为特征根为:29可取前两个因子可取前两个因子F1F1和和F F2 2为公共因子,第一公因子为公共因子,第一公因子F F1 1物价就业因子,对物价就业因子
9、,对X X的贡献为的贡献为1.551.55。第一公因子。第一公因子F F2 2为为投资因子,对投资因子,对X X的贡献为的贡献为0.850.85。共同度分别为。共同度分别为1 1,0.7060.706,0.7060.706。30假定某地固定资产投资率假定某地固定资产投资率,通货膨胀率通货膨胀率,失业率失业率,相关系数矩阵为相关系数矩阵为试用主因子分析法求因子分析模型。假定用试用主因子分析法求因子分析模型。假定用代替初始的代替初始的。31特征根为:对应的非零特征向量为:32334因子旋转(正交变换)建建立立了了因因子子分分析析数数学学目目的的不不仅仅仅仅要要找找出出公公共共因因子子以以及及对对变
10、变量量进进行行分分组组,更更重重要要的的要要知知道道每每个个公公共共因因子子的的意意义义,以以便便进进行行进进一一步步的的分分析析,如如果果每每个个公公共共因因子子的的含含义义不不清清,则则不不便便于于进进行行实实际际背背景景的的解解释释。由由于于因因子子载载荷荷阵阵是是不不惟惟一一的的,所所以以应应该该对对因因子子载载荷荷阵阵进进行行旋旋转转。目目的的是是使使因因子子载载荷荷阵阵的的结结构构简简化化,使使载载荷荷矩矩阵阵每每列列或或行行的的元元素素平平方方值值向向0 0和和1 1两两极极分分化化。有有三三种种主主要要的的正正交交旋转法。四次方最大法、旋转法。四次方最大法、方差最大法方差最大法
11、和等量最大法。和等量最大法。(一)为什么要旋转因子(一)为什么要旋转因子34 百米跑成绩 跳远成绩 铅球成绩 跳高成绩 400米跑成绩 百米跨栏 铁饼成绩 撑杆跳远成绩 标枪成绩 1500米跑成绩奥运会十项全能运动项目奥运会十项全能运动项目得分数据的因子分析得分数据的因子分析3536 因子载荷矩阵可以看出,除第一因子在所有的变量在公共因子上有较大的正载荷,可以称为一般运动因子。其他的3个因子不太容易解释。似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是考虑旋转因子,得下表3738 通过旋转,因子有了较为明确的含义。百米跑,跳远和 400米跑,需要爆发力的项目在 有较大的载荷,可以
12、称为短跑速度因子;铅球,铁饼和 标枪在 上有较大的载荷,可以称为爆发性臂力因子;百米跨栏,撑杆跳远,跳远和为 跳高在 上有较大的载荷,爆发腿力因子;长跑耐力因子。39变换后因子的共同度变换后因子的共同度设设 正交矩阵,做正交变换正交矩阵,做正交变换正交矩阵,做正交变换正交矩阵,做正交变换变换后因子的共同度没有发生变化!变换后因子的共同度没有发生变化!(二)旋转方法二)旋转方法40变换后因子贡献变换后因子贡献设 正交矩阵,做正交变换正交矩阵,做正交变换变换后因子的贡献发生了变化变换后因子的贡献发生了变化!41 1、方差最大法 方差最大法从简化因子载荷矩阵的每一列出发,使和每个因子方差最大法从简化
13、因子载荷矩阵的每一列出发,使和每个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子上又较高的载荷时,对因子的解释最简单。上又较高的载荷时,对因子的解释最简单。方差最大的直观意义是希望通过因子旋转后,使每个因子上的载荷尽量拉开距离,一部分的载荷趋于1,另一部分趋于0。424344455因子得分因子得分(一)因子得分的概念(一)因子得分的概念(一)因子得分的概念(一)因子得分的概念 前面我们主要解决了用公共因子的线性组合来表示一组观测变量的有关问题。如果我们要使用这些因子做其他的研究,比如把得到的因子作为自变量来做回归分析,对样本
14、进行分类或评价,这就需要我们对公共因子进行测度,即给出公共因子的值。49 人人均均要要素素变变量量因因子子分分析析。对我国32个省市自治区的要素状况作因子分析。指标体系中有如下指标:X1:人口(万人)X2:面积(万平方公里)X3:GDP(亿元)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)X6:万人拥有的大学生数(人)X7:万人拥有科学家、工程师数(人)Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 X1 -0.21522 -0.27397 0.89092 X2 0.63973 -0.28739 -0.28755 X3 -0.15791
15、0.06334 0.94855 X4 0.95898 -0.01501 -0.07556 X5 0.97224 -0.06778 -0.17535 X6 -0.11416 0.98328 -0.08300 X7 -0.11041 0.97851 -0.0724650高载荷指标因子命名因子1X2;面积(万平方公里)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)自然资源因子因子2X6:万人拥有的大学生数(人)X7:万人拥有的科学家、工程师数(人)人力资源因子因子3X1;人口(万人)X3:GDP(亿元)经济发展总量因子 X1=-0.21522F1-0.27397F2+0.89092F3 X
16、2=0.63973F1-0.28739F2-0.28755F3 X3=-0.15791F1+0.06334F2+0.94855F3 X4=0.95898F1-0.01501F2-0.07556F3 X5=0.97224F1-0.06778F2-0.17535F3 X6=-0.11416F1+0.98328F2-0.08300F3 X7=-0.11041F1+0.97851F2-0.07246F351 Standardized Scoring Coefficients Standardized Scoring Coefficients FACTOR1FACTOR1 FACTOR2 FACTOR2
17、 FACTOR3FACTOR3 X1 X1 0.057640.05764 -0.06098-0.06098 0.503910.50391 X2 X2 0.227240.22724 -0.09901-0.09901 -0.07713-0.07713 X3 X3 0.146350.14635 0.129570.12957 0.597150.59715 X4 X4 0.479200.47920 0.112280.11228 0.170620.17062 X5 X5 0.455830.45583 0.074190.07419 0.101290.10129 X6 X6 0.054160.05416 0.
18、486290.48629 0.040990.04099 X7 X7 0.057900.05790 0.485620.48562 0.048220.04822F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F2=-0
19、.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X752REGION FACTOR1FACTOR2FACTOR3beijing-0.081694.23473-0.37983tianjin-0.474221.31789-0.878
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CH.9 因子分析 CH
限制150内