第00讲计算机基础知识3.ppt
《第00讲计算机基础知识3.ppt》由会员分享,可在线阅读,更多相关《第00讲计算机基础知识3.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、计算机科学技术的基础知识计算机科学技术的基础知识计算机科学技术的基础知识计算机科学技术的基础知识3 3uu内容提要:内容提要:内容提要:内容提要:uu计算机的运算基础计算机的运算基础计算机的运算基础计算机的运算基础uu程序设计基础程序设计基础程序设计基础程序设计基础uu要要要要求求求求:通通通通过过过过本本本本章章章章的的的的学学学学习习习习,应应应应掌掌掌掌握握握握数数数数制制制制间间间间的的的的转转转转换换换换方方方方法法法法以以以以及及及及数数数数据据据据在在在在计计计计算算算算机机机机内内内内部部部部的的的的表表表表示示示示形形形形式式式式,理理理理解解解解程程程程序序序序设设设设计计
2、计计的的的的基基基基本本本本知知知知识识识识,为为为为学学学学习习习习本本本本书书书书的的的的以以以以下下下下各各各各章章章章和和和和后后后后续续续续课程打好基础课程打好基础课程打好基础课程打好基础 1数制(数制(数制(数制(掌握掌握掌握掌握)uu十十十十进进进进制制制制:是是是是使使使使用用用用数数数数字字字字1 1 1 1、2 2 2 2、9 9 9 9、0 0 0 0等等等等符符符符号号号号来来来来表表表表示示示示数数数数值值值值且且且且采采采采用用用用“逢逢逢逢十十十十进进进进一一一一”的的的的进进进进位位位位计计计计数数数数制制制制。十十十十进进进进制制制制的的的的基基基基数数数数为
3、为为为10101010,位位位位权权权权为为为为10101010i。uu位权表示法数制的特点:位权表示法数制的特点:位权表示法数制的特点:位权表示法数制的特点:uu数字的总个数等于基数。如十进制使用数字的总个数等于基数。如十进制使用数字的总个数等于基数。如十进制使用数字的总个数等于基数。如十进制使用10101010个数字(个数字(个数字(个数字(0 0 0 09 9 9 9)uu最大的数字比最大的数字比最大的数字比最大的数字比基数基数基数基数小小小小1 1 1 1。如十进制中最大的数字为。如十进制中最大的数字为。如十进制中最大的数字为。如十进制中最大的数字为9 9 9 9uu每每每每个个个个数
4、数数数字字字字都都都都要要要要乘乘乘乘以以以以基基基基数数数数的的的的幂幂幂幂次次次次,该该该该幂幂幂幂次次次次由由由由每每每每个个个个数数数数字字字字所所所所在在在在的的的的位位位位置置置置决决决决定定定定uu任何一个任何一个任何一个任何一个N N N N进制数进制数进制数进制数A A A AA A A An n n n A A A An n n n1 1 1 1 A A A A1 1 1 1 A A A A0 0 0 0.A.A.A.A1 1 1 1 A A A A2 2 2 2 A A A Am m m m 基数为基数为基数为基数为N N N N,位权为位权为位权为位权为N N N Ni
5、 i2二进制二进制二进制二进制 uu二二二二进进进进制制制制:使使使使用用用用数数数数字字字字0 0 0 0和和和和1 1 1 1等等等等符符符符号号号号来来来来表表表表示示示示数数数数值值值值且且且且采采采采用用用用“逢逢逢逢二二二二进一进一进一进一”的进位计数制的进位计数制的进位计数制的进位计数制uu二进制数制的特点:二进制数制的特点:二进制数制的特点:二进制数制的特点:uu仅使用仅使用仅使用仅使用0 0 0 0和和和和1 1 1 1两个数字两个数字两个数字两个数字uu最大的数字为最大的数字为最大的数字为最大的数字为1 1 1 1,最小的数字为,最小的数字为,最小的数字为,最小的数字为0
6、0 0 0uu每每每每个个个个数数数数字字字字都都都都要要要要乘乘乘乘以以以以基基基基数数数数2 2 2 2的的的的幂幂幂幂次次次次,该该该该幂幂幂幂次次次次由由由由每每每每个个个个数数数数字字字字所所所所在在在在的的的的位位位位置决定置决定置决定置决定 uu二进制加法和乘法运算规则:二进制加法和乘法运算规则:二进制加法和乘法运算规则:二进制加法和乘法运算规则:0 0 0 00 0 0 00;0;0;0;0 0 0 01 1 1 11;1;1;1;0 00 00 00 00;0;0;0;0 10 10 10 10 0 0 0 1 1 1 10 0 0 01;1;1;1;1 1 1 11 1 1
7、 110;10;10;10;1 01 01 01 00;0;0;0;1 11 11 11 11 1 1 1 3八进制与十六进制八进制与十六进制八进制与十六进制八进制与十六进制 uu八八八八进进进进制制制制:使使使使用用用用数数数数字字字字0 0 0 0、1 1 1 1、2 2 2 2、3 3 3 3、4 4 4 4、5 5 5 5、6 6 6 6、7 7 7 7等等等等符符符符号号号号来来来来表表表表示示示示数数数数值值值值的的的的,且且且且采采采采用用用用“逢逢逢逢八八八八进进进进一一一一”的的的的进进进进位位位位计计计计数制数制数制数制uu十十十十六六六六进进进进制制制制:使使使使用用用用
8、数数数数字字字字0 0 0 0、1 1 1 1、2 2 2 2、3 3 3 3、4 4 4 4、5 5 5 5、6 6 6 6、7 7 7 7、8 8 8 8、9 9 9 9和和和和A A A A、B B B B、C C C C、D D D D、E E E E、F F F F等等等等符符符符号号号号来来来来表表表表示示示示数数数数值值值值,其其其其中中中中A A A A、B B B B、C C C C、D D D D、E E E E、F F F F分分分分别别别别表表表表示示示示数数数数字字字字10101010、11111111、12121212、13131313、14141414、15151
9、515。十十十十六六六六进进进进制制制制的的的的计计计计数数数数方方方方法法法法为为为为“逢逢逢逢十十十十六六六六进进进进一一一一”4十进制整数转换为非十进制整数十进制整数转换为非十进制整数十进制整数转换为非十进制整数十进制整数转换为非十进制整数 uu除除除除基基基基取取取取余余余余法法法法:“除除除除基基基基取取取取余余余余,先先先先余余余余为为为为低低低低(位位位位),后后后后余为高(位)余为高(位)余为高(位)余为高(位)”例例例例1 1 1 1 (55555555)10101010(110111110111110111110111)2 2 2 2 2222221551276130131
10、110余数余数5十进制整数转换为非十进制整数(续)十进制整数转换为非十进制整数(续)十进制整数转换为非十进制整数(续)十进制整数转换为非十进制整数(续)例例例例2,2,2,2,例例例例3 3 3 3 (55555555)10101010=(67676767)8 8 8 8=(37373737)16161616886555516166703703余数余数余数余数6十进制小数转换为非十进制小数十进制小数转换为非十进制小数十进制小数转换为非十进制小数十进制小数转换为非十进制小数 uu乘乘乘乘基基基基取取取取整整整整法法法法:“:“:“:“乘乘乘乘基基基基取取取取整整整整,先先先先整整整整为为为为高高
11、高高(位位位位),后后后后整整整整为为为为低低低低(位)(位)(位)(位)”例例例例4 4 4 4(0.625 0.625 0.625 0.625)10101010(0.1010.1010.1010.101)2 2 2 2 20.625 0.25 1.25 0.5 2 1.0 21整数整数107十进制小数转换为非十进制小数十进制小数转换为非十进制小数十进制小数转换为非十进制小数十进制小数转换为非十进制小数 uu十十十十进进进进制制制制小小小小数数数数并并并并不不不不是是是是都都都都能能能能够够够够用用用用有有有有限限限限位位位位的的的的其其其其他他他他进进进进制制制制数数数数精精精精确确确确地
12、地地地表表表表示示示示,这这这这时时时时应应应应根根根根据据据据精精精精度度度度要要要要求求求求转转转转换换换换到到到到一一一一定定定定的的的的位数为止,作为其近似值。位数为止,作为其近似值。位数为止,作为其近似值。位数为止,作为其近似值。uu如如如如果果果果一一一一个个个个十十十十进进进进制制制制数数数数既既既既有有有有整整整整数数数数部部部部分分分分,又又又又有有有有小小小小数数数数部部部部分分分分,则应将整数部分和小数部分分别进行转换则应将整数部分和小数部分分别进行转换则应将整数部分和小数部分分别进行转换则应将整数部分和小数部分分别进行转换8十进制小数转换为非十进制小数十进制小数转换为非
13、十进制小数十进制小数转换为非十进制小数十进制小数转换为非十进制小数(续续续续)例例例例5 5 5 5 (0.320.320.320.32)10101010(0.01010.01010.01010.0101)2 2 2 2 2 0.32 0.64 1.28 2 0.56 20整数整数01 0.28 2 1.121 9非十进制数转换为十进制数非十进制数转换为十进制数非十进制数转换为十进制数非十进制数转换为十进制数 uu位权法位权法位权法位权法:把各非十进制数按权展开,然后求和:把各非十进制数按权展开,然后求和:把各非十进制数按权展开,然后求和:把各非十进制数按权展开,然后求和 例例例例7 7 7
14、7 (10110101101011010110)2 2 2 2 121212124 4 4 4020202023 3 3 3121212122 2 2 2121212121 1 1 1020202020 0 0 0 161616160 0 0 04 4 4 42 2 2 20 0 0 0(22222222)10101010 例例例例8 8 8 8 (10101.101110101.101110101.101110101.1011)2 2 2 2 121212124 4 4 4020202023 3 3 3121212122 2 2 2020202021 1 1 1121212120 0 0 0
15、 12121212-1-1-1-1+02+02+02+02 2 2 2 2121212123 3 3 3 161616160 0 0 04 4 4 40 0 0 01 1 1 10.50.50.50.50 0 0 00.125 0.125 0.125 0.125(21.62521.62521.62521.625)10101010 例例例例9 9 9 9(1207120712071207)8 8 8 8181818183 3 3 3282828282 2 2 2080808081 1 1 1787878780 0 0 0 5125125125121281281281280 0 0 07 7 7
16、7(647647647647)10101010 例例例例10101010(1 1 1 1B2EB2EB2EB2E)161616161161161161163 3 3 3B16B16B16B162 2 2 22162162162161 1 1 1E16E16E16E160 0 0 0 1409614096140961409611256112561125611256216216216216141141141141(6958695869586958)10101010 10二进制与八进制之间的转换二进制与八进制之间的转换二进制与八进制之间的转换二进制与八进制之间的转换 uu二二二二进进进进制制制制数数
17、数数转转转转换换换换为为为为八八八八进进进进制制制制数数数数:以以以以小小小小数数数数点点点点为为为为界界界界,将将将将整整整整数数数数部部部部分分分分自自自自右右右右向向向向左左左左和和和和小小小小数数数数部部部部分分分分自自自自左左左左向向向向右右右右分分分分别别别别按按按按每每每每三三三三位位位位为为为为一一一一组组组组(不不不不足足足足三三三三位位位位用用用用0 0 0 0补补补补足足足足),然然然然后后后后将将将将各各各各个个个个三三三三位位位位二二二二进进进进制制制制数数数数转转转转换换换换为为为为对对对对应应应应的一位八进制数的一位八进制数的一位八进制数的一位八进制数uu八八八八
18、进进进进制制制制数数数数转转转转换换换换为为为为二二二二进进进进制制制制数数数数:把把把把每每每每一一一一位位位位八八八八进进进进制制制制数数数数转转转转换换换换为为为为对对对对应的三位二进制数应的三位二进制数应的三位二进制数应的三位二进制数 例例例例11111111(10111001010.101101110111001010.101101110111001010.101101110111001010.1011011)2 2 2 2(010010010010 111111111111 001001001001 010010010010 .101101101101 101101101101 1
19、00100100100)2 2 2 2 (2712.5542712.5542712.5542712.554)8 8 8 8 例例例例12121212(456.174456.174456.174456.174)8 8 8 8(100100100100 101101101101 110110110110.001001001001 111111111111 100100100100)2 2 2 2 (100101110.0011111100101110.0011111100101110.0011111100101110.0011111)2 2 2 2 11二进制与十六进制之间的转换二进制与十六进制之
20、间的转换二进制与十六进制之间的转换二进制与十六进制之间的转换 uu二二二二进进进进制制制制数数数数转转转转换换换换为为为为十十十十六六六六进进进进制制制制数数数数:以以以以小小小小数数数数点点点点为为为为界界界界,将将将将整整整整数数数数部部部部分分分分自自自自右右右右向向向向左左左左和和和和小小小小数数数数部部部部分分分分自自自自左左左左向向向向右右右右分分分分别别别别按按按按每每每每四四四四位位位位为为为为一一一一组组组组,不不不不足足足足四四四四位位位位用用用用0 0 0 0补补补补足足足足,然然然然后后后后将将将将各各各各个个个个四四四四位位位位二二二二进进进进制制制制数数数数转转转转
21、换换换换为为为为对对对对应应应应的一位十六进制数的一位十六进制数的一位十六进制数的一位十六进制数uu十十十十六六六六进进进进制制制制数数数数转转转转换换换换为为为为二二二二进进进进制制制制数数数数:把把把把每每每每一一一一位位位位十十十十六六六六进进进进制制制制数数数数转转转转换换换换为对应的四位二进制数为对应的四位二进制数为对应的四位二进制数为对应的四位二进制数 例例例例13131313(10111001010.101101110111001010.101101110111001010.101101110111001010.1011011)2 2 2 2(0101 1100 0101 110
22、0 0101 1100 0101 1100 1010.1011 01101010.1011 01101010.1011 01101010.1011 0110)2 2 2 2 (5 5 5 5CA.B6CA.B6CA.B6CA.B6)16161616 例例例例14141414(1 1 1 1A9F.1BD A9F.1BD A9F.1BD A9F.1BD)16161616(0001 0001 0001 0001 1010 1010 1010 1010 1001 1001 1001 1001 1111.0001 1111.0001 1111.0001 1111.0001 1011 11011011
23、11011011 11011011 1101)2 2 2 2 (1101010011111.0001101111011101010011111.0001101111011101010011111.0001101111011101010011111.000110111101)2 2 2 2 12码制码制(了解了解)计计算算机机处处理理的的数数据据分分为为数数值值型型和和非非数数值值型型两两类。类。数值型数据数值型数据是指数学中的代数值,具有量的是指数学中的代数值,具有量的含义,且有正负之分、整数和小数之分。含义,且有正负之分、整数和小数之分。非数值型数据非数值型数据是指输入到计算机中的所有信是指
24、输入到计算机中的所有信息,没有量的含义,如英文字母、数字符号息,没有量的含义,如英文字母、数字符号0909、汉字、声音、图形、图像等。汉字、声音、图形、图像等。在计算机中这些数据是如何表示的呢?由于在计算机中这些数据是如何表示的呢?由于计算机采用二进制,也就是说计算机只识别计算机采用二进制,也就是说计算机只识别0 0和和1 1形式的代码,所以输入到计算机中任何数值型和形式的代码,所以输入到计算机中任何数值型和非数值型数据都非数值型数据都必须转换为二进制代码必须转换为二进制代码 。131 1 机器数机器数 在在计计算算机机中中,数数值值型型数数据据是是用用二二进进制制数数来来表表示示的的,数数值
25、值型型数数据据有有正正、负负之之分分,那那么么在在计计算算机机内内部部是是如如何何表表示示正正、负负号的呢?号的呢?在在计计算算机机内内部部数数值值型型数数据据的的最最高高位位用用来来表表示示数数值值的的正正负负,这一位通常称为这一位通常称为符号位符号位。规定:用规定:用“0”“0”表示表示“+”号,用号,用“1”“1”表示表示“”号。号。在在计计算算机机内内部部数数字字和和正正负负号号都都用用二二进进制制代代码码表表示示,两两者者结结合合在在一一起起构构成成数数值值型型数数据据的的机机内内表表示示。我我们们把把这这种种连连同同数数字与符号组合在一起的二进制数称为字与符号组合在一起的二进制数称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 00 计算机基础知识
限制150内