材料力学 第8章 能量法1.ppt
《材料力学 第8章 能量法1.ppt》由会员分享,可在线阅读,更多相关《材料力学 第8章 能量法1.ppt(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第八章第八章 能量法能量法一、杆件的应变能一、杆件的应变能二、应变能普遍表达式二、应变能普遍表达式(克拉贝隆原理克拉贝隆原理)三、卡氏定理三、卡氏定理能量法能量法四、互等定理四、互等定理五、虚功原理五、虚功原理 单位力法单位力法 图乘法图乘法六、超静定问题六、超静定问题 力法力法七、冲击应力七、冲击应力2022/12/221材料力学求解弹性体系求解弹性体系(如杆件如杆件)的变形可采用的方法:的变形可采用的方法:1 1、分析法分析法/解析法解析法平衡方程平衡方程静力平衡关系静力平衡关系几何方程几何方程变形变形几何关系几何关系物理方程物理方程应力应变关系应力应变关系 利用利用应变能应变能的概念,解
2、决与弹性体系变形有关的问题的的概念,解决与弹性体系变形有关的问题的 方法。方法。在求解在求解组合变形组合变形、曲杆或杆系曲杆或杆系以及以及超静定问题超静定问题时,能量时,能量 法是一种非常有效的方法,是结构分析的基础。法是一种非常有效的方法,是结构分析的基础。能量法能量法/基本概念基本概念2 2、能量法、能量法2022/12/222材料力学有关的几个基本概念有关的几个基本概念 3 3、能量守恒:、能量守恒:忽略缓慢加载过程中动能和其它形式的能量损忽略缓慢加载过程中动能和其它形式的能量损 失,杆件能量守恒,即杆内所储存的应变能失,杆件能量守恒,即杆内所储存的应变能U 在数值上与外力所作的功在数值
3、上与外力所作的功 W 相等相等 UW1 1、外力功、外力功:线弹性体系在外力的作用下产生变形,每个外力线弹性体系在外力的作用下产生变形,每个外力 在与它相对应的位移上所作的功在与它相对应的位移上所作的功W。2 2、应变能、应变能:弹性体受外力作用下产生变形而储存了能量,这个弹性体受外力作用下产生变形而储存了能量,这个 被储存的能量即为被储存的能量即为应变能应变能或或变形能变形能 U。能量法能量法/基本概念基本概念2022/12/223材料力学一、杆件产生基本变形时的应变能一、杆件产生基本变形时的应变能1 1、轴向拉伸或压缩、轴向拉伸或压缩FL LOB LFA能量法能量法/杆件的应变能杆件的应变
4、能式中式中 轴力,轴力,A 横截面面积横截面面积2022/12/224材料力学由拉压杆件组成的杆系的应变能:由拉压杆件组成的杆系的应变能:F12345 结构中第结构中第i杆的轴力杆的轴力 Li结构中第结构中第i杆的长度,杆的长度,Ai 第第i杆的截面面积杆的截面面积式中式中 n杆系中杆件的总数。杆系中杆件的总数。能量法能量法/杆件的应变能杆件的应变能2022/12/225材料力学取微段研究取微段研究:微段的应变能微段的应变能:整个杆件的整个杆件的拉压应变能拉压应变能受力复杂杆受力复杂杆(轴力沿杆的轴线变化轴力沿杆的轴线变化)的应变能的应变能qLdxdx(dx)x能量法能量法/杆件的应变能杆件的
5、应变能2022/12/226材料力学2 2、圆截面杆的扭转、圆截面杆的扭转mLmOBmA圆截面杆的应变能圆截面杆的应变能式中式中 T 圆杆横截面上的扭矩;圆杆横截面上的扭矩;圆杆横截面对圆心的极惯性矩。圆杆横截面对圆心的极惯性矩。能量法能量法/杆件的应变能杆件的应变能2022/12/227材料力学受力复杂的圆截面杆受力复杂的圆截面杆(扭矩沿杆的轴线为变量扭矩沿杆的轴线为变量)d dxTT整个杆的整个杆的扭转应变能扭转应变能为为可取微段分析:可取微段分析:能量法能量法/杆件的应变能杆件的应变能2022/12/228材料力学3 3、平面弯曲、平面弯曲纯弯曲梁的应变能:纯弯曲梁的应变能:式中式中 M
6、 梁横截面上的弯矩;梁横截面上的弯矩;I 梁横截面对中性轴的惯性矩梁横截面对中性轴的惯性矩LmmoBAm能量法能量法/杆件的应变能杆件的应变能2022/12/229材料力学横力弯曲梁横力弯曲梁(弯矩沿梁的轴线为变量弯矩沿梁的轴线为变量)的应变能的应变能整梁的整梁的弯曲应变能弯曲应变能按微段分析:按微段分析:和拉压、扭转应变能比较和拉压、扭转应变能比较和拉压、扭转应变能比较和拉压、扭转应变能比较能量法能量法/杆件的应变能杆件的应变能2022/12/2210材料力学4 4、剪切、剪切纯剪切时微段梁的应变能:纯剪切时微段梁的应变能:FSdxFSOBCFS/A 由于切应力在截面上并非均匀分布。引入系数
7、由于切应力在截面上并非均匀分布。引入系数k,因此因此微段梁的应变能为:微段梁的应变能为:能量法能量法/杆件的应变能杆件的应变能2022/12/2211材料力学整个梁的整个梁的剪切应变能剪切应变能:式中式中(b为截面的宽度,为截面的宽度,S为截面对中性为截面对中性轴的静矩轴的静矩)(2)一般实心截面的细长梁一般实心截面的细长梁:剪切应变能远小于其弯曲剪切应变能远小于其弯曲应变能,通常忽略不计。应变能,通常忽略不计。(1)k 由截面的几何形状决定由截面的几何形状决定:矩形截面矩形截面:k=1.2,圆截面圆截面:k=10/9,圆环形截面圆环形截面:k=2能量法能量法/杆件的应变能杆件的应变能2022
8、/12/2212材料力学F例:矩形截面悬臂梁,长例:矩形截面悬臂梁,长L,截,截面高面高h,宽,宽b,k=1.2。细长梁细长梁整个梁的弯曲应变能:整个梁的弯曲应变能:细长梁的剪切应变能远小于弯曲应变能,可忽略不计!细长梁的剪切应变能远小于弯曲应变能,可忽略不计!整个梁的剪切应变能:整个梁的剪切应变能:得得解:解:2022/12/2213材料力学二、应变能的普遍表达式二、应变能的普遍表达式(克拉贝隆原理克拉贝隆原理)FOB A基本变形下应变能的一般表达式:基本变形下应变能的一般表达式:式中式中F广义力广义力(力或力偶力或力偶);广义位移广义位移(线位移或角位移线位移或角位移)且且 F=C (力与
9、位移成线性关系力与位移成线性关系)表明:表明:弹性体的应变能是一个状态量,仅决定于外力和位移弹性体的应变能是一个状态量,仅决定于外力和位移的最终值,与加载的过程无关。的最终值,与加载的过程无关。能量法能量法/克拉贝隆原理克拉贝隆原理2022/12/2214材料力学应变能的普遍表达式应变能的普遍表达式(克拉贝隆原理克拉贝隆原理)的导出的导出 设在某弹性体上作用有外力设在某弹性体上作用有外力,在支承约束,在支承约束下,在相应的力下,在相应的力 方向产生的位移为方向产生的位移为,(i=1,2,n)。则物体的应变能为:则物体的应变能为:能量法能量法/克拉贝隆原理克拉贝隆原理2022/12/2215材料
10、力学特别注意点特别注意点特别注意点特别注意点:广义力广义力,可以是一个力,也可以是一个力偶,可以是一个力,也可以是一个力偶,或者是一对力,或者是一对力偶或者是一对力,或者是一对力偶。在所有力共同作用下在所有力共同作用下(因因 与全部作用力有关与全部作用力有关),与广义力与广义力 相对应的沿着力的方向的广义位移。相对应的沿着力的方向的广义位移。能量法能量法/克拉贝隆原理克拉贝隆原理2022/12/2216材料力学F 力:力:F,位移:位移:力:力:m,位移:位移:FFLL+例子例子例子例子力:力:F,位移:位移:力:力:m,位移:位移:mm m 能量法能量法/克拉贝隆原理克拉贝隆原理2022/1
11、2/2217材料力学关于应变能计算的讨论关于应变能计算的讨论关于应变能计算的讨论关于应变能计算的讨论1适用线弹性材料在小变形下的应变能的计算适用线弹性材料在小变形下的应变能的计算2应变能可以通过应变能可以通过外力功外力功计算,也可以通过计算,也可以通过计算计算杆件杆件微段上的微段上的内力功,内力功,然后积分求得然后积分求得3 故叠加原理故叠加原理 在应变能计算中不能使用在应变能计算中不能使用。能量法能量法/克拉贝隆原理克拉贝隆原理2022/12/2218材料力学4 应变能是恒为正的标量,与坐标轴的选择无关应变能是恒为正的标量,与坐标轴的选择无关能量法能量法/克拉贝隆原理克拉贝隆原理M(x)只产
12、生弯曲转角FN(x)只产生轴向线位移T(x)只产生扭转角不计FS 产生的应变能2022/12/2219材料力学例例1 1 试计算图示吊车架的应变能,并应用它求节点试计算图示吊车架的应变能,并应用它求节点A的的 竖直位移。已知竖直位移。已知E=200=200GPa,F=57.6=57.6kN。斜杆斜杆AB由两根由两根 50 50 5mm等边角钢组成,每根角钢的横截面面积等边角钢组成,每根角钢的横截面面积 ,横杆,横杆AC由两根由两根No.10No.10槽槽钢组成,每根槽钢钢组成,每根槽钢的横截面面积的横截面面积 。设各杆自重可以不计。设各杆自重可以不计。F30ACB2m能量法能量法/克拉贝隆原理
13、克拉贝隆原理2022/12/2220材料力学解解:FA由节点由节点A的平衡条件求得的平衡条件求得AB杆的内力:杆的内力:AC杆的内力为:杆的内力为:杆系的应变能:杆系的应变能:设节点设节点A的竖直位移为的竖直位移为 ,则由,则由 得:得:能量法能量法/克拉贝隆原理克拉贝隆原理2022/12/2221材料力学例例2 2 图示等截面悬臂梁,图示等截面悬臂梁,E,A,I 已知。在自由端受集中力已知。在自由端受集中力F 和集和集中力偶中力偶m 作用。设材料是线弹性的,试计算梁的应变能。考虑两作用。设材料是线弹性的,试计算梁的应变能。考虑两种不同的加载次序,略去剪力的影响种不同的加载次序,略去剪力的影响
14、。解解:(1)(1)集中力集中力F和集中力偶和集中力偶m同时由同时由零开始按比例逐渐增加至最终值。零开始按比例逐渐增加至最终值。梁自由端的转角为:梁自由端的转角为:(方向与方向与m一致一致)F mL自由端的垂直位移为:自由端的垂直位移为:梁的应变能梁的应变能能量法能量法/克拉贝隆原理克拉贝隆原理2022/12/2222材料力学(2)(2)先作用先作用F,加载时做功为加载时做功为:再加力偶矩再加力偶矩m,外力所作的功为外力所作的功为:梁的总应变能:梁的总应变能:从这两种不同的加载次序来看,从这两种不同的加载次序来看,梁的应变能仅与载荷的始梁的应变能仅与载荷的始态和终态有关,而与加载次序无关。态和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料力学 第8章 能量法1 能量
限制150内