密码学Digital Signature.ppt
《密码学Digital Signature.ppt》由会员分享,可在线阅读,更多相关《密码学Digital Signature.ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、DigitalSignature曹天杰Tianjie Cao College of Computer Science andTechnology,China University of Mining and Technology,Xuzhou,China中国矿业大学计算机科学与技术学院2003.6.61DefinitionsDefinitionsDigitalSignature-adatastringwhichassociatesamessagewithsomeoriginatingentityDigitalSignatureGenerationAlgorithmamethodforprodu
2、cingadigitalsignatureDigitalsignatureverificationalgorithm-amethodforverifyingthatadigitalsignatureisauthentic(i.e.,wasindeedcreatedbythespecifiedentity).DigitalSignatureScheme-consistsofasignaturegenerationalgorithmandanassociatedverificationalgorithm2ApplicationsDigitalSignaturescanprovideAuthenti
3、cationDataIntegrityNon-RepudiationOneApplicationCertificationofpublickeysinlargenetworks3ClassificationDigitalsignatureschemeswithappendixrequiretheoriginalmessageasinputtotheverificationalgorithm.Digitalsignatureschemeswithmessagerecoverydonotrequiretheoriginalmessageasinputtotheverificationalgorit
4、hm.Inthiscase,theoriginalmessageisrecoveredfromthesignatureitself.4Classification(cont)Taxonomyofdigitalsignaturessignature schemesmessage recoveryappendixdeterministicrandomizedrandomizeddeterministic5TypesofSignaturesDirect digital signatureinvolvesonlythecommunicatingpartiesAssumedthatreceiverkno
5、wspublickeyofsender.Signaturemaybeformedby(1)encryptingentiremessagewithsendersprivatekeyor(2)encryptinghashcodeofmessagewithsendersprivatekey.Furtherencryptionofentiremessage+signaturewithreceiverspublickeyorsharedprivatekeyensuresconfidentiality.6TypesofSignaturesProblemswithdirectsignatures:Valid
6、ityofschemedependsonthesecurityofthesendersprivatekeysendermaylaterdenysendingacertainmessage.PrivatekeymayactuallybestolenfromXattimeT,sotimestampmaynothelp.7TypesofSignaturesArbitrated digital signatureinvolvesatrustedthirdpartyorarbiter1.Everysignedmessagefromsender,X,toreceiver,Y,goestoanarbiter
7、,A,first.2.Asubjectsmessage+signaturetonumberofteststocheckorigin&content3.AdatesthemessageandsendsittoYwithindicationthatithasbeenverifiedtoitssatisfaction8ArbitratedDigitalSignaturesRequiresanunconditionallyTTPaspartofthesignaturegenerationandsignatureverification.Eachentitysharesasymmetrickeywith
8、theTTPSymmetrickeycryptographyresultsinaveryfastalgorithmHowever,thisspeedupisovershadowedbytheTTPaswellascommunicationoverhead9ArbitratedDigitalSignaturesSignatureGeneration(byA)ATTPIA,u=EkA(h(m)s=EkT(h(m)|IA)10ArbitratedDigitalSignaturesSignatureVerification(byB)BTTPIB,v=EkB(s)EkB(h(m)|IA)11Digita
9、lSignatureStandardsRSADigitalSignature-ISO9796-ANSIX9.31-CCITTX.509ElGamalNISTFIPS186DigitalSignatureStandard(DSS)12PublicKeyCryptographySignatureschemesLet P be the set of all messagesA be the set of signaturesK be the set of all keys13BasicMechanismofSignatureSchemesK:Akeygenerationalgorithmtorand
10、omlyselectapublickeypair.SigK:Asignaturealgorithmthattakesmessage+privatekeyasinputandgeneratesasignatureforthemessageasoutputVerK:Asignatureverificationalgorithmthattakessignature+publickeyasinputandgeneratesinformationbitaccordingtowhethersignatureisconsistentasoutput.14AttackmodelsTotal Breaking
11、Attack-Theattackerknowsthepublickey.Hetriestorecoverthecorrespondingsecretkey.Forgery Attack-Theattackerknowsthepublickey.Hetriestofindthesignatureforagivenmessage.Existential Forgery Attack-Theattackerknowsthepublickey.Hetriestofindapairofamessageanditssignature.Chosen Message Attack(CMA)-Theattack
12、erisabletosignmessagesbutdoesnotknowthekeyused.Hetriestoperformthe(existential)forgeryortoobtainthesecretkey.15ForgeryAttackTheattackertriestofindthesignaturesfromagivenmessagemandthepublickey.Forgeryattackermessagempublickeysignaturesofm(d:secretkey)16ExistentialForgeryAttackExistentialForgeryAttac
13、kerpublickey(m,s):pairofmessageandsignature.Theattackertriestofindapairofamessageanditssignaturefromthepublickey.Themessageofthepairmayhavenomeanings.(d:secretkey)17ChosenMessageAttackTheattackertriestofindapair(m,s)fromseveralpairsofsignature(mi,si)andthepublickey.ChosenMessageAttackerpublickey(m,s
14、):pairofmessageandsignature.(d:secretkey)SigningOraclemessagesmSd(m):signaturesIftheattackercanchoosenewmessagesdependenttoobtainedsignatures,itiscalledtheadaptivechosenmessageattack.18TheRSAdigitalsignatureLetn=pq,where pand qareprimes.LetP=A=Zn,anddefine K=(n,p,q,e,d):ed=1modf(n).Foreachkey K=(n,p
15、,q,e,d),definesigK(m)=mdmodnandverK(m,y)=true y e=mmodn,where(m,y)Zn.Publickey=(n,e),Privatekey(n,d).19ExistentialForgeryofRSALet(S1,S2)bethesignaturesofthemessages(M1,M2),namelyS1=M1dmodn,S2=M2dmodn.ThenS=S1*S2modnisthesignatureofM=M1*M2modn,becauseS=S1*S2=M1dM2d=(M1*M2)dmodn.ThemessageMmustberando
16、mizedbeforesigning.ThemessageMisusuallysignedbyS=h(M)dmodn,wherehisthehashfunctionh:0,1*-Z/nZ.(h(M)=h(M1)*h(M2)modndoesnothold)20TheElGamalsignatureschemeLetpbeaprimeandg Zpaprimitiveelement.LetP=Zp*,A=Zp*xZp-1andK=(p,g,x,y):y=gxmodp.Thevalues p,g,yarethepublickey.xistheprivatekey.21TheElGamalsignat
17、ureschemeSigningLetmZp*beamessage.ForK=(p,g,x,y):y=gxmodp,andsecretrandomnumberk Zp-1*,define:sigK(m,k)=(s,t),wheres=gkmodpt=(m-xs)k-1 modp-1(kt+xs=m modp-1)VerificationverK(m,(s,t)=true stys=gmmodp.stys=gkt gxs=gmmodp kt+xs=m modp-122ToyexampleLetp=467,g=2,x=127.Theny=2127mod467=132.Letmessagem=100
18、,Choosek=213.Thenk-1mod466=431.Thesignatureis:s=2213mod467=29t=(m-xs)k-1mod(p-1)=(100-127x29)431mod466=51Verification:2100?132292951mod46723ThesecurityoftheElGamalsignatureIftheDiscreteLogarithmproblemcanbesolvedthenElGamalsignaturescanbeforged.Theconversemaynotbetrue.Theexponentkmustbeprivatecannot
19、beusedtwicebest:chosenatrandom.24DSAAvariantoftheElGamalandSchnorrSignatureSchemesPublickeycryptographicsystemusedforgeneratingandverifyingdigitalsignaturesCannotbeusedfordataencryptionorkeyexchangeBasedonfamiliarnumbertheoryconceptsMakesuseoftheSecureHashAlgorithm(SHA-1)25KeyGenerationAlgorithmGene
20、ratingpublicandprivatekeys:1)Selectaprimenumberq2159q2160|q|=160bits2)Selectaprimenumberp2511p21024|p|=Lbits512L1024L0mod64p10modq26KeyGenerationAlgorithmGeneratingpublicandprivatekeys:3)Calculateaqthrootof1,=g(p1)/qmodp1g1Zp*4)Selectarandom“personal”privatekeyx1x(q1)5)Calculate“personal”publickeyyy
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 密码学Digital Signature 密码学 Digital
限制150内