教育专题:3[1]4_一元一次方程模型的应用.ppt
《教育专题:3[1]4_一元一次方程模型的应用.ppt》由会员分享,可在线阅读,更多相关《教育专题:3[1]4_一元一次方程模型的应用.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元一次方程模型的应用一元一次方程模型的应用本节内容3.4动脑筋动脑筋某湿地公园举行观鸟节活动某湿地公园举行观鸟节活动,其门票价格如下其门票价格如下:全价票全价票20元元/人人半价票半价票10元元/人人 该公园共售出该公园共售出1200张门票,得总票款张门票,得总票款20000元,元,问全价票和半价票各售出多少张问全价票和半价票各售出多少张?本问题中涉及的等量关系有本问题中涉及的等量关系有:全价票款全价票款+半价票款半价票款=总票款总票款.因此,设售出全价票因此,设售出全价票x张,张,则售出半价票则售出半价票(1200-x)张,张,根据等量关系,建立一元一次方程,根据等量关系,建立一元一次方程
2、,得得 x20+(1200-x)10=20000.去括号,得去括号,得20 x+12000-10 x=20000.移项,合并同类项,得移项,合并同类项,得10 x=8000.即即 x=800.半价票为半价票为 1200-800=400(张张).因此,全价票售出因此,全价票售出800张,半价票售出张,半价票售出400张张.例例1 某房间里有四条腿的椅子和三条腿的凳子共某房间里有四条腿的椅子和三条腿的凳子共16个个,如果椅子腿数与凳子腿数的和为如果椅子腿数与凳子腿数的和为60条条,有几张椅子有几张椅子 和几条凳子和几条凳子?举举例例分析分析 本问题中涉及的等量关系有:本问题中涉及的等量关系有:椅子
3、数椅子数+凳子数凳子数=16,椅子腿数椅子腿数+凳子腿数凳子腿数=60.解解 设有设有x 张椅子,则有张椅子,则有(16-x)条凳子条凳子.根据题意,得根据题意,得4x+3(16-x)=60.去括号,得去括号,得 4x+48-3x=60.移项,合并同类项,得移项,合并同类项,得 x=12.凳子数为凳子数为16-12=4(条条).答:有答:有12张椅子,张椅子,4条凳子条凳子.运用一元一次方程模型解决实际问题的步运用一元一次方程模型解决实际问题的步骤有哪些骤有哪些?说一说说一说实际问题实际问题建立方程模型建立方程模型解方程解方程检验解的检验解的合理性合理性分析等量关系分析等量关系设未知数设未知数
4、练习练习1.(1)一个长方形的周长是一个长方形的周长是60cm,且长比宽多,且长比宽多5cm,求长方形的长;求长方形的长;答:长方形的长为答:长方形的长为17.5 cm.(2)一个长方形的周长是一个长方形的周长是60cm,且长与宽的比是,且长与宽的比是 3 2,求长方形的宽求长方形的宽.答:长方形的宽为答:长方形的宽为12cm.动脑筋动脑筋 某商店若将某型号彩电按标价的八折出售某商店若将某型号彩电按标价的八折出售,则此则此时每台彩电的利润率是时每台彩电的利润率是5.已知该型号彩电的进价为已知该型号彩电的进价为每台每台4000元,求该型号彩电的标价元,求该型号彩电的标价.本问题中涉及的等量关系有
5、:本问题中涉及的等量关系有:售价售价-进价进价=利润利润.如果设每台彩电标价为如果设每台彩电标价为x元,那么彩电的售价元,那么彩电的售价、利润就可以分别表示出来利润就可以分别表示出来,如图所示如图所示进价:进价:4000元元现售价:现售价:0.8x元元标价:标价:x元元利润:利润:(40005%)元元因此,设彩电标价为每台因此,设彩电标价为每台x元,根据等量关系,元,根据等量关系,得得解得解得 x=.因此,彩电标价为每台因此,彩电标价为每台 元元.52505250进价:进价:4000元元现售价:现售价:0.8x元元标价:标价:x元元利润:利润:(40005%)元元0.8x-4000=40005
6、%例例2 2011年年10月月1日日,杨明将一笔钱存入某银行,定期,杨明将一笔钱存入某银行,定期 3年,年利率是年,年利率是5%.若到期后取出,他可得本息和若到期后取出,他可得本息和 23000元,求杨明存入的本金是多少元元,求杨明存入的本金是多少元.举举例例分析分析 顾客存入银行的钱叫本金,顾客存入银行的钱叫本金,银行付给顾客的酬金叫利息银行付给顾客的酬金叫利息 利息利息=本金本金年利率年利率年数年数 本问题中涉及的等量关系有:本问题中涉及的等量关系有:本金本金 +利息利息 =本息和本息和.解解 设杨明存入的本金是设杨明存入的本金是 x 元,元,化简,得化简,得 1.15x=23000.根据
7、等量关系,得根据等量关系,得 x+35%x=23000,解得解得 x=20000.答:杨明存入的本金是答:杨明存入的本金是20000元元.练习练习 1.某市发行足球彩票,计划将发行总额的某市发行足球彩票,计划将发行总额的49%作为奖作为奖金,若奖金总额为金,若奖金总额为93100元,彩票每张元,彩票每张2元,问应卖元,问应卖出多少张彩票才能兑现这笔奖金?出多少张彩票才能兑现这笔奖金?解解 设发行彩票设发行彩票x张,张,根据题意,得根据题意,得 2x=93100.解这个方程,得解这个方程,得 x=95000答:应卖出答:应卖出95000张彩票才能兑现这笔奖金张彩票才能兑现这笔奖金.2.2011年
8、年11月月9日,李华在某银行存入一笔一年期定期存日,李华在某银行存入一笔一年期定期存 款,年利率是款,年利率是3.5%,一年到期后取出时,他可得本息一年到期后取出时,他可得本息和和 3105元,求李华存入的本金是多少元元,求李华存入的本金是多少元.答:李华存入的本金是答:李华存入的本金是3000元元.星期天早晨,小斌和小强分别骑自行车从家里星期天早晨,小斌和小强分别骑自行车从家里同时出发去参观雷锋纪念馆同时出发去参观雷锋纪念馆.已知他俩的家到雷锋已知他俩的家到雷锋纪念馆的路程相等,小斌每小时骑纪念馆的路程相等,小斌每小时骑10km,他在上午,他在上午10时到达;小强每小时骑时到达;小强每小时骑
9、15km,他在上午,他在上午9时时30分分到达到达.求他们的家到雷锋纪念馆的路程求他们的家到雷锋纪念馆的路程.动脑筋动脑筋我们知道,我们知道,由于小斌的速度较慢,因此他花的时间比小由于小斌的速度较慢,因此他花的时间比小强花的时间多强花的时间多.本问题中涉及的等量关系有:本问题中涉及的等量关系有:因此,设他俩的家到雷锋纪念馆的路程均为因此,设他俩的家到雷锋纪念馆的路程均为s km,解得解得 s=.因此,小斌和小强的家到雷锋纪念馆的路程为因此,小斌和小强的家到雷锋纪念馆的路程为 km根据等量关系,得根据等量关系,得1515例例3 小明与小红的家相距小明与小红的家相距20km,小明从家里出发骑小明从
10、家里出发骑 自行车去小红家,两人商定小红到时候从家里自行车去小红家,两人商定小红到时候从家里 出发骑自行车去接小明出发骑自行车去接小明.已知小明骑车的速度为已知小明骑车的速度为 13 km/h,小红骑车的速度是小红骑车的速度是12 km/h.(1)如果两人同时出发,那么他们经过多少小时如果两人同时出发,那么他们经过多少小时 相遇相遇?(2)如果小明先走如果小明先走30min,那么小红骑车要走多,那么小红骑车要走多 少小时才能与小明相遇少小时才能与小明相遇?举举例例分析分析 由于小明与小红都从家里出发,相向而行,所以相遇时,由于小明与小红都从家里出发,相向而行,所以相遇时,他们走的路程的和等于两
11、家之间的距离他们走的路程的和等于两家之间的距离.不管两人是同时不管两人是同时 出发,还是有一人先走,都有出发,还是有一人先走,都有 小明走的路程小明走的路程+小红走的路程小红走的路程=两家之间的距离两家之间的距离(20km).(1)如果两人同时出发,那么他们经过多少小时相遇如果两人同时出发,那么他们经过多少小时相遇?解解(1)设小明与小红骑车走了)设小明与小红骑车走了x h后相遇,后相遇,则根据等量关系,得则根据等量关系,得 13x+12x=20.解得解得 x=0.8.答:经过答:经过0.8 h他们两人相遇他们两人相遇.小明走的路程小明走的路程小红走的路程小红走的路程(2)如果小明先走如果小明
12、先走30min,那么小红骑车要走多少,那么小红骑车要走多少 小时才能与小明相遇小时才能与小明相遇?解解(2)设小红骑车走了设小红骑车走了t h后与小明相遇,后与小明相遇,则根据等量关系,得则根据等量关系,得 13(0.5+t)+12t=20.解得解得 t=0.54.答:小红骑车走答:小红骑车走0.54h后与小明相遇后与小明相遇.小明先走的路程小明先走的路程 小红出发后小明走的路程小红出发后小明走的路程 小红走的路程小红走的路程练习练习1.甲、乙两车分别从甲、乙两车分别从A,B两地同时出发,相向而两地同时出发,相向而 行已知行已知A,B两地的距离为两地的距离为480km,且甲车以,且甲车以 65
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 一元一次方程 模型 应用
限制150内