第11讲_散点图、相关系数.ppt
《第11讲_散点图、相关系数.ppt》由会员分享,可在线阅读,更多相关《第11讲_散点图、相关系数.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1SPSS基础与基础与Access数据库数据库J姓 名:郑戟明(电 话:67703855*E-mail:shift_ 客观世界中,事物之间存在相互依存、相互制约、相互影响的关系。用于描述事物数量特征的变量之间也存在一定的关系。这些关系分为两种:(1)函数关系:函数关系:变量之间的一一对应的关系,当自变量x取一定值时,因变量y依据函数关系取唯一的值。如:在单价确定时,销售量与销售额之间的关系:y=f(x)销售额价格*销售量 圆的面积与圆的半径之间的关系:圆面积3.14*半径26一、相关的概念一、相关的概念1.1.关系的概念关系的概念 (2)相关关系:相关关系:如果变量之间存在密切的关系,但又不能
2、由一个或几个变量的值确定另一个变量的值,当自变量x取一定值时,因变量y的值可能有多个,这种变量之间的非一一对应的、不确定的关系,称之为相关关系。如:子女身高与父母身高之间的关系 证券指数与利率之间的关系7一、相关的概念一、相关的概念2.2.相关关系的分类相关关系的分类 (1)按相关的程度分为:完全相关:一个变量的取值完全取决于另一个变量,数据点落在一条直线(或曲线)上相关:一个变量的取值部分取决于另一个变量,数据点围绕分布在一条直线(或曲线)上不相关:两个变量的数据点分布很分散,无任何规律 就是函数关系8一、相关的概念一、相关的概念2.2.相关关系的分类相关关系的分类 (2)按相关的表现形式分
3、为:线性相关:两个变量之间的关系近似地表现为一条直线非线性相关:两个变量之间的关系近似地表现为一条曲线9一、相关的概念一、相关的概念2.2.相关关系的分类相关关系的分类 (3)按相关的方向分为:正相关:一个变量增加(减少),导致另一个变量增加(减少)负相关:一个变量增加(减少),导致另一个变量减少(增加)10一、相关的概念一、相关的概念3.3.线性相关程度的四种相关关系线性相关程度的四种相关关系 u强正线性相关:一个变量x增加,导致另一个变量y明显增加,说明x是影响变量y的主要因素u弱正线性相关:一个变量x增加,导致另一个变量y增加,但不明显,说明x是影响变量y的因素,但不是唯一的影响因素u强
4、负线性相关:一个变量x增加,导致另一个变量y明显减少,说明x是影响变量y的主要因素u弱负线性相关:一个变量x增加,导致另一个变量y减少,但不明显,说明x是影响变量y的因素,但不是唯一的影响因素11一、相关的概念一、相关的概念4.4.相关分析的概念相关分析的概念 相关分析就是描述两个或两个以上变量间关系密切程度的统计方法,有效地揭示事物之间相关关系的强弱程度。5.5.相关分析的方法相关分析的方法 图形(散点图):常用的一种直观的分析方法,将样本数据点绘制在二维平面或三维空间上,根据这些数据点的分布特征,能够直观地研究变量间的统计关系以及它们的强弱程度和数据对的可能走向。数值(相关系数):变量间关
5、系的密切程度常以一个数量性指标描述,这个指标称相关系数r=0.812一、相关的概念一、相关的概念SPSSSPSS提供了三种相关分析的方法提供了三种相关分析的方法二元变量分析(Bivariate):偏相关分析(Partial):距离相关分析(Distances):13相关分析的方法相关分析的方法14二、相关分析的方法二、相关分析的方法1.1.散点图散点图散点图是相关分析过程中常用的一种直观的分析方法;将样本数据点绘制在二维平面或三维空间上,根据数据点的分布特征,直观的研究变量之间的统计关系以及强弱程度。就两个变量而言,如果变量之间的关系近似地表现为一条直线,则称为线性相关,如图(a)和(b);如
6、果变量之间的关系近似地表现为一条曲线,则称为非线性相关或曲线相关,如图(c);如果两个变量的观测点很分散,无任何规律,则表示变量之间没有相关关系,如图(d)。(a)(b)(c)(d)15二、相关分析的方法二、相关分析的方法2.2.相关系数相关系数 散点图能够直观地反映变量之间的关系,但不精确。相关系数以数值的方式精确地反映了变量之间线性关系的强弱程度。相关系数通过正、负表示相关的方向,相关系数r的取值在-1+1之间:下表中是通过相关系数来描述相关程度 不同类型的变量采用不同的相关系数指标,但取值范围和含义都是相同的相关系数取值范围r=0|r|0.8|r|=1相关程度无相关微弱相关低度相关显著相
7、关高度相关完全相关16二、相关分析的方法二、相关分析的方法3.3.相关系数的分类相关系数的分类 uPearsonPearson简单相关系数简单相关系数(皮尔逊皮尔逊)用来度量正态分布的正态分布的定距变量间的线性相关关系 Pearson简单相关系数不能用于度量变量之间的非线性关系uSpearmanSpearman秩相关系数秩相关系数(斯皮尔曼斯皮尔曼)采用非参数检验方法来度量定序变量间的线性相关关系 由于数据为非定距变量,因此不能直接采用原始数据,而是利用数据的秩uKendallKendall秩相关系数秩相关系数(肯德尔肯德尔)采用非参数检验方法来度量定序变量间的线性相关关系 看备注页17二、相
8、关分析的方法二、相关分析的方法4.4.利用利用相关系数相关系数进行变量之间进行变量之间线性线性关系的分析关系的分析 利用相关系数进行变量之间线性关系的分析分两步:(1)利用样本数据计算样本相关系数r;(2)对样本的总体是否存在显著的线性线性关系进行推测。注:显著的相关性并不能导出任何因果结论。18二、相关分析的方法二、相关分析的方法5.5.对样本的线性关系进行对样本的线性关系进行推测步骤推测步骤 由于存在抽样的随机性以及样本数量较少等原因,通常样本相关系数不能直接反映样本是否存在显著的线性相关关系,需要通过假设检验的方式对样本的总体进行统计推测。推测步骤(1)提出零假设H0:两总体线性不相关(
9、或相关系数与0无显著性差异)(2)选择检验统计量:对不同变量采用不同的相关系数,同时也采用不同的检验统计量(3)计算统计量的观测值和对应的概率p值;(4)对总体的相关性进行推断19二、相关分析的方法二、相关分析的方法6.6.根据概率根据概率P P进行进行解释解释 检验统计量的概率p值小于给定的显著性水平值(0.05),拒绝零假设,认为总体相关。若检验统计量的概率p值大于给定的显著性水平值(0.05),接受零假设,认为总体不相关。通常认为通常认为0.050.05,认为总体相关,认为总体相关;0.010.01,认为总体,认为总体显著显著相关相关。20二元变量分析二元变量分析21三、二元变量分析三、
10、二元变量分析1.1.概念概念 二元变量分析(Bivariate)是研究和分析两个变量之间相关程度的统计方法。2.2.应用应用 很多时候都是通过两个变量进行相关分析,所以两个变量之间相关程度的分析应用十分广泛。如:家庭收入与家庭消费支出之间关系是否相关 商品销售价格与商品销售额之间关系是否相关 客户满意度与商业企业综合竞争力之间关系是否相关 广告投入和销售额之间关系是否相关22三、二元变量分析三、二元变量分析3.3.SPSSSPSS操作及案例分析操作及案例分析 例一:例一:为了研究某项职业技能和员工年龄之间的关系,对员工进行职业技能测试,得到有关上述两变量的数据表。现以年龄作为自变量x,职业技能
11、测试得分为因变量y,以两变量数据为依据,绘制散点图分析两变量之间的相关关系。注意:通过散点图只是初步分析两变量之间的相关关系 通常用散点图描述相关关系的表达方式:完全相关 较强(正/负)相关 较弱(正/负)相关 不相关 23三、二元变量分析三、二元变量分析3.3.SPSSSPSS操作及案例分析操作及案例分析结果分析:结果分析:从散点图中可以看出,点的分布比较分散,在拟合线上或周围的点分布较少,说明两变量之间相关程度较弱。从拟合线的趋势来看,职业技能和员工年龄之间之间有一定的相关关系,而且是随着年龄的增加,职业技能测试得分会随之上升,但上升幅度较小。所以上述两变量之间具有较弱正相关的关系。通过对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 11 散点图 相关系数
限制150内