教育专题:2721相似三角形的判定.ppt
《教育专题:2721相似三角形的判定.ppt》由会员分享,可在线阅读,更多相关《教育专题:2721相似三角形的判定.ppt(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新课导入新课导入ABCA1B1C1A=A1,B=B1,C=C1,AB:A1B1=BC:B1C1=CD:C1D1=k当当时,时,则则ABC 与与A1B1C1 相似,相似,记作记作ABC A1B1C1。要把表示对应角顶点的要把表示对应角顶点的字母写在对应的位置上。字母写在对应的位置上。注意注意相似三角形相似三角形 对应角相等、对应边成比例的三角形对应角相等、对应边成比例的三角形叫做相似三角形。叫做相似三角形。ABCEDF相似的表示方法相似的表示方法符号:符号:读作:相似于读作:相似于 相似比相似比AB:A1B1=BC:B1C1=CD:C1D1=k 时,时,ABCA1B1C1则则ABC 与与A1B1
2、C1 的相似比为的相似比为 k .或或A1B1C1 与与ABC 的相似比为的相似比为 .这两个风筝图形相似,观察并思考:这两个风筝图形相似,观察并思考:ABAA1B1C1大胆猜想,大胆猜想,那么,那么,若已知若已知ABA1B1,能否得出能否得出ABC1 A1B1C1ABA1B1 除了根据相似三角形的除了根据相似三角形的定义定义来判断是否来判断是否相似,还有相似,还有其它的方法其它的方法吗?吗?已知:已知:DE/BC,且,且D是边是边AB的中点的中点,DE交交AC于于E.猜想:猜想:ADE与与ABC有什么关系有什么关系?并证明。并证明。ABCDE证明证明:且且 A=A DE/BC1=B,2=C
3、ADE与与ABC的对应角相等的对应角相等相似。相似。1 2三角形的中位线截得的三角形与原三角形相似,相似比三角形的中位线截得的三角形与原三角形相似,相似比 。四边形四边形DBFE是平行四边形是平行四边形 DE=BF,DB=EF ADE ABCABCDEF过过E作作EF/AB交交BC于于F 又又 DE/BC又又 AD=DB AD=EF A=3,2=C ADEEFC DE=FC=BF,ADE与与ABC的对应边成比例的对应边成比例23AE=EC已知:已知:DE/BC,ADE与与ABC有什么关系有什么关系?猜想:猜想:ADE与与ABC有什么关系有什么关系?相似。相似。ABCDEF当点当点D在在AB上任
4、意一点时,上面的结论还成立吗?上任意一点时,上面的结论还成立吗?12你能证明吗?你能证明吗?平行于三角形一边的直线和其他两边平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。相交,所构成的三角形与原三角形相似。知识要点知识要点平行于三角形一边的定理平行于三角形一边的定理ABCDE即:即:在在ABC中,中,如果如果DEBC,那么那么ADEABCA型型 你还能画出其你还能画出其他图形吗?他图形吗?平行于三角形一边的直线截其它两边,平行于三角形一边的直线截其它两边,所得的所得的对应线段成比例对应线段成比例。推论推论ABCDE即:即:在在ABC中,中,如果如果DEBC,那么那么(上比
5、全,(上比全,全比上)全比上)(上比下,下比上)(上比下,下比上)(下比全,全比下)(下比全,全比下)ABCDE相似具有传递性相似具有传递性ADEABCMN 如果再作如果再作 MNDE,共有多少对相似三角形?,共有多少对相似三角形?AMNADEAMNABC共有三对相似三角形。共有三对相似三角形。定义定义判定方法判定方法全等全等三角三角形形相似相似三角三角形形回顾并思考回顾并思考三角、三边对三角、三边对应相等的两个应相等的两个三角形全等三角形全等三角对应相等三角对应相等,三三边对应成比例的两边对应成比例的两个三角形相似个三角形相似 角角边边角角ASA角角角角边边AAS边边边边边边SSS边边角角边
6、边SAS斜斜边边与与直直角角边边HL 判定三角形相似,是不是也有这么多种方法呢?判定三角形相似,是不是也有这么多种方法呢?边边边边边边SSS已知:已知:ABCA1B1C1.A1B1C1ABC求证:求证:有效利用判定定理一去求证。有效利用判定定理一去求证。探究探究1 证明:在线段证明:在线段 (或它的延长线)上截取(或它的延长线)上截取 ,过点,过点D作作 ,交,交 于点于点E根据前面的根据前面的定理可得定理可得 .A1B1C1ABCDE又又A1B1C1ABCDE(SSS)如果两个三角形的三组对应边的比如果两个三角形的三组对应边的比相等,那么这两个三角形相似。相等,那么这两个三角形相似。知识要点
7、知识要点判定三角形相似的定理之一判定三角形相似的定理之一ABCA1B1C1.即:即:如果如果那么那么A1B1C1ABC 三边对应成比例,两三角形相似。三边对应成比例,两三角形相似。边边边边边边SSS求证:求证:BAD=CAE。ADCEBABCADEBAC=DAEBACDAC=DAEDAC即即BAD=CAE小练习小练习已知:已知:解:解:边边角角边边SAS探究探究2已知:已知:ABCA1B1C1.A1B1C1ABC求证:求证:B=B1.你能证明吗?你能证明吗?如果两个三角形的两组对应边的比相如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三等,并且相应的夹角相等,那么这两个三角
8、形相似。角形相似。知识要点知识要点判定三角形相似的定理之二判定三角形相似的定理之二两边对应成比例,且夹角相等,两边对应成比例,且夹角相等,两三角形相似。两三角形相似。边边角角边边SASA1B1C1ABCABCA1B1C1.即:即:如果如果B=B1.那么那么 大家一起画一个三角形大家一起画一个三角形,三个角分别为,三个角分别为60、45、75,大家画出的三角形相似吗,大家画出的三角形相似吗?同桌的同学,同桌的同学,通过测量对应边的长度进行比较。通过测量对应边的长度进行比较。探究探究3即:如果一个三角形的三个角分别与另一个三角形即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 2721 相似 三角形 判定
限制150内