教育专题:263实际问题与二次函数(1)(1).ppt
《教育专题:263实际问题与二次函数(1)(1).ppt》由会员分享,可在线阅读,更多相关《教育专题:263实际问题与二次函数(1)(1).ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、说出抛物线的开口方向、对称轴、顶说出抛物线的开口方向、对称轴、顶点,最大值或最小值。点,最大值或最小值。y=2(x-3)2+3y=x2+4x-1-202462-4xy若若3x3,该函数的最,该函数的最大值、最小值分别为大值、最小值分别为()、()、()。)。又若又若0 x3,该函数的,该函数的最大值、最小值分别为(最大值、最小值分别为()、()、()。)。求函数的最值问题,应注意什么求函数的最值问题,应注意什么?55 555 132、图中所示的二次函数图像的、图中所示的二次函数图像的解析式为:解析式为:1 1、求下列二次函数的最大值或最小值:、求下列二次函数的最大值或最小值:y=x22x3;y
2、=x24x 某商品现在的售价为每件某商品现在的售价为每件60元,每星期可卖出元,每星期可卖出300件,市件,市场调查反映:每涨价场调查反映:每涨价1元,每元,每星期少卖出星期少卖出10件;每降价件;每降价1元,元,每星期可多卖出每星期可多卖出18件,已知件,已知商品的进价为每件商品的进价为每件40元,如元,如何定价才能使利润最大?何定价才能使利润最大?请大家带着以下几个问题读题请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?哪些量随之发生了变化?某商
3、品现在的售价为每件某商品现在的售价为每件60元,每星期元,每星期可卖出可卖出300件,市场调查反映:每涨价件,市场调查反映:每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每元,每星期可多卖出星期可多卖出18件,已知商品的进价为件,已知商品的进价为每件每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况先来看涨价的情况:先来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商元,则每星期售出商品的利润品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。的函数关系
4、式。涨价涨价x元时则每星期少卖元时则每星期少卖 件,实际卖出件,实际卖出 件件,销销额为额为 元,买进商品需付元,买进商品需付 元因因此,所得利润为此,所得利润为元元10 x(300-10 x)(60+x)(300-10 x)40(300-10 x)y=(60+x)(300-10 x)-40(300-10 x)即即(0X30)(0X30)可以看出,这个函数的可以看出,这个函数的图像是一条抛物线的一图像是一条抛物线的一部分,这条抛物线的顶部分,这条抛物线的顶点是函数图像的最高点,点是函数图像的最高点,也就是说当也就是说当x取顶点坐取顶点坐标的横坐标时,这个函标的横坐标时,这个函数有最大值。由公式
5、可数有最大值。由公式可以求出顶点的横坐标以求出顶点的横坐标.所以,当定价为所以,当定价为65元时,利润最大,最大利润为元时,利润最大,最大利润为6250元元在降价的情况下,最大利润是多少?在降价的情况下,最大利润是多少?请你参考请你参考(1)的过程得出答案。的过程得出答案。解:设降价解:设降价x元时利润最大,则每星期可多卖元时利润最大,则每星期可多卖18x件,实件,实际卖出(际卖出(300+18x)件,销售额为件,销售额为(60-x)(300+18x)元,元,买进商品需付买进商品需付40(300-10 x)元,因此,得利润元,因此,得利润答:定价为答:定价为 元时,利润最大,最大利润为元时,利
6、润最大,最大利润为6050元元 做一做做一做由由(1)(2)的讨论及现在的销的讨论及现在的销售情况售情况,你知道应该如何定价你知道应该如何定价能使利润最大了吗能使利润最大了吗?(0 x20)归纳小结归纳小结:运用二次函数的性质求实际问题的最大值和最小值运用二次函数的性质求实际问题的最大值和最小值的一般步骤的一般步骤 :求出函数解析式和自变量的取值范围求出函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。配方变形,或利用公式求它的最大值或最小值。检查求检查求得的最大值或最小值对应的自变量的值必得的最大值或最小值对应的自变量的值必须在自变量的取值范围内须在自变量的取值范围内 。
7、某商场销售某种品牌的纯牛奶,已知进价某商场销售某种品牌的纯牛奶,已知进价为每箱为每箱4040元,市场调查发现:若每箱以元,市场调查发现:若每箱以50 50 元元销售销售,平均每天可销售平均每天可销售100100箱箱.价格每箱降低价格每箱降低1 1元,平均每天多销售元,平均每天多销售2525箱箱 ;价格每箱升高价格每箱升高1 1元,平均每天少销售元,平均每天少销售4 4箱。如何定价才能使得箱。如何定价才能使得利润最大?利润最大?练一练练一练若生产厂家要求每箱售价在若生产厂家要求每箱售价在4555元之间。元之间。如何定价才能使得利润最大?(为了便于计如何定价才能使得利润最大?(为了便于计算,要求每
8、箱的价格为整数)算,要求每箱的价格为整数)有一经销商,按市场价收购了一种活蟹有一经销商,按市场价收购了一种活蟹1000千克,千克,放养在塘内,此时市场价为每千克放养在塘内,此时市场价为每千克30元。据测算,此后元。据测算,此后每千克活蟹的市场价,每天可上升每千克活蟹的市场价,每天可上升1元,但是,放养一天元,但是,放养一天需各种费用支出需各种费用支出400元,且平均每天还有元,且平均每天还有10千克蟹死去,千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克假定死蟹均于当天全部售出,售价都是每千克20元(放元(放养期间蟹的重量不变)养期间蟹的重量不变).设设x天后每千克活蟹市场价为天后每千克活
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 263 实际问题 二次 函数
限制150内