用空间向量解决空间角问题.ppt
《用空间向量解决空间角问题.ppt》由会员分享,可在线阅读,更多相关《用空间向量解决空间角问题.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、空间空间“角度角度”问题问题一、复习引入一、复习引入用空间向量解决立体几何问题的用空间向量解决立体几何问题的“三步曲三步曲”。(1)建立立体图形与空间向量的联系,用空间向)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果)把向量的运算结果“翻译翻译”成相应的几何意义。成相应的几何意义。(化为向量问题
2、)(化为向量问题)(进行向量运算)(进行向量运算)(回到图形)(回到图形)空间空间“夹角夹角”问题问题1.异面直线所成角异面直线所成角lmlm若两直线若两直线 所成的所成的角为角为 ,则则例例1解:以点解:以点C C为坐标原点建立空间直角坐标系为坐标原点建立空间直角坐标系 如图所示,设如图所示,设 则:则:所以:所以:所以 与 所成角的余弦值为2.线面角线面角l设设直直线线l的的方方向向向向量量为为 ,平平面面 的的法法向向量量为为 ,且且直直线线 与平面与平面 所成的所成的角为角为 (),则则N解:如图建立坐标系A-xyz,则即在长方体在长方体 中,中,例例2:N又又在长方体在长方体 中,中
3、,例例2:练习:的棱长为的棱长为1.题型二:线面角题型二:线面角正方体正方体练习、如练习、如 图所示,在四棱锥图所示,在四棱锥P-ABCD中,底面中,底面ABCD是正方形,侧棱是正方形,侧棱PD 底面底面ABCD,PD=DC,E是是PC的的中点。中点。(1)证明:证明:PA/平面平面EDB;(2)求求EB与底面与底面ABCD所成的角的正切值。所成的角的正切值。ABCDPEGxyz方方向向向向量量法法 将将二二面面角角转转化化为为二二面面角角的的两两个个面面的的方方向向向向量量(在在二二面面角角的的面面内内且且垂垂直直于于二二面面角角的的棱棱)的夹角。如图(的夹角。如图(2),设二面角),设二面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 解决 问题
限制150内