2023年高一数学说课稿范文(精选多篇).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023年高一数学说课稿范文(精选多篇).docx》由会员分享,可在线阅读,更多相关《2023年高一数学说课稿范文(精选多篇).docx(113页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高一数学说课稿范文(精选多篇) 推荐第1篇:高一数学对数函数 (说课稿) 对数函数说课稿 一、说教材 1、地位和作用 本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习.而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识. 2、教学目标的确定及依据 依据新课标
2、和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:(1) 理解对数函数的概念、掌握对数函数的图象和性质. (2) 培养学生自主学习、综合归纳、数形结合的能力.(3) 培养学生用类比方法探索研究数学问题的素养; (4) 培养学生对待知识的科学态度、勇于探索和创新的精神. (5) 在民主、和谐的教学气氛中,促进师生的情感交流. 3、教学重点、难点及关键 重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识.难点:底数a对对数函数的图象和性质的影响; 关键:对数函数与指数函数的类比教学 关键由指数函数的图象过渡到
3、对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点. 二、说教法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质.根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: (1)启发引导学生思考、分析、实验、探索、归纳
4、. 1 (2)采用“从特殊到一般”、“从具体到抽象”的方法. (3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法.在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻. 三、说学法 教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: (1)对照比较学习法:学习对数函数,处处与指数函数相对照.(2)探究式学
5、习法:学生通过分析、探索,得出对数函数的定义.(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质.(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距. 这样可发挥学生的主观能动性,有利于提高学生的各种能力.四说教程 在认真分析教材、教法、学法的基础上,设计教学过程如下: (一) 创设问题情景、提出问题 在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数 问题二:现在我们来研究相反
6、的问题,如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数 问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢? 设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念. (二) 意义建构: x 1 对数函数的概念: 同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改为对数式,x=log0.84y,其中x年也可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的.设计意图:前面的问题情景的底数为2,而这个问题情景的底
7、数为0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类.但在习惯上,我们用x表示自变量,用y表示函数值 问题一:你能把以上两个函数表示出来吗? 问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想) 问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释.问题四:你能根据指数函数的定义给出对数函数的定义吗? 问题五:问题六: 与与 中的x,y的相同之处是什么?不同之处是什么? 中的x,y的相同之处是什么?不同之处是什么? 设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不
8、理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域 2 对数函数的图象与性质 问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?(提示学生进行类比学习) 合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系. 1x (1)y=2;y=log2x (2)y=,y=log1x 22合作探究2:当a0,a1,函数y=a与y=logax的图象之间有什么关系?(在这儿体现“从特殊到一般”、“从具体到抽象”的方法) 合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质. (学生讨论并交流
9、各自的发现成果,教师结合学生的交流,适时归纳总结,并板 xx 书对数函数的性质) 问题1:对数函数y=logax(a0,a1,)是否具有奇偶性,为什么? 问题2:对数函数y=logax(a0,a1,),当a1时,x取何值,y0,x取何值,y.0,当0a0,a1,) (该题主要考查对数函数y=logax的定义域(0,+)这一限制条件根据函数的解析式求得不等式,解对应的不等式.同时通过本题也可让学生总结求函数的定义域应从哪些方面入手) 例2:利用对数函数的性质,比较下列各组数中两个数的大小: (1)log23.4 ,log23.8 (2)log0.51.8 ,log0.52. 1(3)loga5.
10、1 ,loga5.9 (4)log75 ,log67 , (在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法) 合作探究4:已知logm40,a1,函数y与y=logax的图象之间有什么关系?(在这儿体现“从特殊到一般”、“从具体到抽象”的方法) 合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质. 亿库教育网 亿库教育网 (学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质) 问题1:对数函数y么? 问题2:对数函数y=log
11、a=logax(a0,a1,)是否具有奇偶性,为什 x(a0,a1,),当a1时,x取何值,y0,x取何值,y.0,当0a0,a1,) =logx(该题主要考查对数函数ya的定义域(0,+)这一限制条件根据函数的解析式求得不等式,解对应的不等式.同时通过本题也可让学生总结求函数的定义域应从哪些方面入手) 例2:利用对数函数的性质,比较下列各组数中两个数的大小: 亿库教育网 亿库教育网 (1)log23.4 ,log23.8 (2)log0.51.8 ,log0.52. 1(3)loga5.1 ,log7a5.9 (4)log75 ,log6 , (在这儿要求学生通过回顾指数函数的有关性质比较大
12、小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法) 合作探究4:已知logm4logn4,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想.) 本题可以从以下几方面加以引导点拨 1.本题的难点在哪儿? 2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系 本题也可以从形的角度来思考. (四) 目标检测 P69 1,2,3 (五) 课堂小结 由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等) (六)布置作业
13、P70 1,2,3 亿库教育网 亿库教育网 推荐第3篇:高一数学 如何科学合理的学习高一数学高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。 1、培养良好的学习习惯。什么是良好的学习习惯?它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习等多个方面。 (1)制定计划。从而使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。 (2)课前自学。这是上好新课,取得较好
14、学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。 (3)专心上课。“学然后知不足”,这是理解和掌握基本知识、基本技能和基本方法的关键环节。课前自学过的学生上课更能专心听课,他们知道什么地方该详细听,什么地方可以一带而过,该记的地方才记下来,而不是全盘抄录,顾此失彼。 (4)及时复习。这是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复
15、习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。 (5)独立作业。这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。这一过程也是对学生意志毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”。 (6)解决疑难。这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长
16、期坚持使对所学知识由“熟”到“活”。 (7)系统小结。这是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。 2、循序渐进,防止急躁。由于学生年龄较小,阅历有限,不少学生容易急躁。有的学生贪多求快,囫囵吞枣。有的想靠几天“冲刺” 一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。为什么高中要学三年而不是三天!许多优秀的
17、学生能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了相当熟练的程度。 总之,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法。 高一数学学习的五个不良学习状态 1、学习习惯因依赖心理而滞后。初中生在学习上的依赖心理是很明显的。第一,学生依赖于套用教师提供的题型“模子”;第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了,由“参与学习”转入“督促学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 数学 说课稿 范文 精选
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内