《线性代数习题解答-第三版-郑宝东-哈工大习题1.pdf》由会员分享,可在线阅读,更多相关《线性代数习题解答-第三版-郑宝东-哈工大习题1.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、习习题题一一1按自然数从小到大的自然次序,求解各题.(1)求1至6的全排列241356的逆序数.解解:t(241356)002100 3.(2)求1至2n的全排列135解:解:t(13(2n1)246(2n)的逆序数.210n(n1).2(2n1)242n)000(n1)(n2)(3)选择i与j,使由1至9的排列,91274i56 j成偶排列.解:解:由91274i56 j是从 1 至 9 的排列,所以i,j只能取3或8.当i 8,j 3时,t(912748563)0 111 2 1 3 3 6 18,是偶排列.当i 3,j 8时t(912743568)0 111 2 3 2 2 1 13,是
2、奇排列,不合题意舍去.(4)选择i与j,使由1至9的排列71i25j489成奇排列.解解:由71i25j489是从1至9的排列,所以i,j只能取3或6.当i 3,j 6时,t(713256489)0 11 2 11 3 0 0 9,是奇排列.当i 6,j 3时,t(716253489)0 11 2 2 3 3 0 0 12,是偶排列,不合题意舍去.2计算下列行列式(1)9a1018b81226b13a;(2)32153320537528475184abaccdcf;2aede.ef(3)153;(4)bdbf203212解解:(1)(2)9a18b26b13a3215332053913a2b2
3、ba3205310032053117(a24b2).320533205375184751841003205310075184752847518410812275184100751842223 0.075184003205300 4313100.(3)153 54 3320321248121ab(4)bdaccdcfaeef111111111102200de abcdef 11 abcdef 0bf111 abcdef 0020 4abcdef.02x3已知3yz02 1,利用行列式性质求下列行列式.y3yzx1y 1z 134xy111x(1)3x3x2x3z 2;(2)y2z 2y3yy2z
4、z 2xyz01z2.3解:解:(1)3x33z 2 302 2 302 2.222111x2(2)x1y1z 13401xyz1112 302 3023413413xyz11111102 302 10 1.31114用行列式定义计算:12(1)00;(2)1000020000.3450n12n10解解:(1)345(1)t(p1p2p3p4p5)a1p1a2p2a3p3a4p4a5p5t(54321)a15a24a33a42a51(1)1012345 120.(1)201(2)020nn10(1)t(p1p2pn)a1p1a2p2anpn(1)(1)5用行列式的定义证明:t(2 3n1)n1
5、a12a23a(n1)nan1n (1)n1n!123a11a12a21a22(1)000000a13a23000a14a24a34a44a54a15a25a35 0;a45a55a11a1200a33a4400a11a12a33a34a21a22a43a45a13a23000a14a24a34a44a54a21a22(2)a31a32a41a42a34.a44a11a12a21a22证:(1)D 000000a15a25a35(1)t(p1p2p3p4p5)a1p1a2p2a3p3a4p4a5p5a45a55假设有a1P1a2P2a3P3a4P4a5P5 0,由已知p3,p4,p5必等于4或
6、5,从而p3,p4,p5中至少有两个相等,这与p1,p2,p3,p4,p5是1,2,3,4,5的一个全排列矛盾,故所有项a1P1a2P2a3P3a4P4a5P5 0,因此D 0.a11a1200a33a4300(1)t(p1p2p3p4)a1p1a2p2a3p3a4p4,由已知,只有当p1,p2a34a44a21a22(2)a31a32a41a42取1或2时,a1p1a2 p2a3p3a4 p4 0,而p1,p2,p3,p4是1,2,3,4的一个全排列,故p3,p4取3或4,于是3D (1)t(1234)a11a22a33a44(1)t(1243)a11a22a34a43(1)t(2134)a
7、12a21a33a44(1)t(2143)a12a21a34a43 a11a22a33a44a11a22a34a43a12a21a33a44a12a21a34a43从而a11a21a12a33a22a43a34(a11a22a12a21)(a33a44a34a43)a44 a11a22a33a44a11a22a34a43a12a21a33a44a12a21a34a43 D6计算a30(1)523;(2)1022114;0b012c111214000dxa(3)Dn21110aax123n00;1111.1a30bax110;(4)Dn 101100111aaa000a0(5)Dn 00a1a0
8、解:(1)101(2)101110;(6)Dn 111a52 按第43行展开d(1)4403b201000c0141a30d 0b012c1612020311按第3列展开11166(1)33dc abcd.221210361160111021110331221421110003412 312112116 312011212 31201121271 9.01020037003003xa0036000ar1r2(n1)a x(n1)a x(n1)a x(3)Dr1r3axnaxaaaxr1rnaa111axa(n 1)a x aaaaa11110 xa00(n1)a x 00 xa0000 xa(
9、n1)a x(xa)n1.123n123n1100c1c20(4)Dn 1010c1c301001c1cn0123n n(n1)2.a0010a00(5)Dn 00a0100a23100100axn0015a000a(1)1n0a0000100a00按第1行展开(1)11a0a00a0 a(1)a ann2n1n(1)n11an2.11111111002111(6)Dn 1111(2)7证明10201 00210001n11(1)n12n1.a2(1)2aab1b21ab2b (ab)21a2abb2a2ababb2b2c1(1)c22aabab2b2b证证:2aab2bc2(1)c31110
10、01(1)33a(ab)b(ab)abab11ab(ab)3(a2)2(b2)2(c2)(d 2)22(ab)2(2)a2b2cd22(a1)2(b1)2(c1)(d 1)2a2b2c2d22(a3)2(b3)2(c3)(d 3)22 0证证:等式左端a22a1a24a4b22b1b24b4a26a9b26b9c22c1c24c4c26c9d22d 1d24d 4d26d 962a2a1c2(1)c1b22b1c3(1)c12c2c1c4(1)c12d2d 14a46a9a24b46b9c3(2)c2b222a1262b1264c46c9c4(3)c3c2c1264d 46d 9d22d 1
11、2601x1a11x2a1(3)1x3a11x4a1x12b1x1b22x2b1x2b22x3b1x3b22x4b1x4b2x13c1x12c2x1c332x2c1x2c2x2c332x3c1x3c2x3c31x332x4c1x4c2x4c31x41x11x2x122x2xx2324x133x2xx3334c2(a1)c11x11x2证证:等式左端c(b)c3211x3c4(c3)c11x4c3(b1)c21x2c4(c2)c21x31x4端.8解关于未知数x的方程x12b1x12x2b1x22x3b1x32x4b1x4x13c1x12c2x132x2c1x2c2x232x3c1x3c2x33
12、2x4c1x4c2x41x1x122x22x32x4x13c1x121x1x122x22x32x4x133x2等式右3x33x432c(c)cx2c1x2x2413132x3c1x31x332x4c1x41x4x(1)31x2026 0 x10 x解解:31x2026(x1)x10 x13x22(x1)x(x2)3(x1)x 2x3(x1)(x3)(x1)0所以x11,x2 3,x3 1.a(2)maxxbmm 0(m 0)b7a解解:maxxbaabx00 xa1bmm m 111 m 11xbbxb m(xa)因m 0,所以x1 a,x2 b.11bx m(xa)(xb)0a119设a12
13、a22an2a1na2nannanna2na1na1p2a2p2anp2a1pna2pnanpn,其中“”是对1,2,;(2)a21an1 a,求下列行列式:an1an2(1)a1na2nanna12a22an2a11a21an1;a21a11a22a12a1p1a2p1pn(3)p1p2,n的所有全排列p1p2pnanp1取和,n 2.解:解:(1)经行的交换得a11an1原式(1)n1a12an2a32a22a1nanna31a21a3na2na11(1)(n1)(n2)21a12a22a1na2nanna21an1an2(1)n(n1)2a.(2)与(1)类似,经列的交换得8n(n1)原
14、式(1)2a.(3)经列的交换,得a1p1a1p2a1pna11a12a1na2p1a2p2a2pn(1)(p1p2pn)a21a22a2n(1)(p1p2pn)aanp1anp2anpnan1an2ann1 11故原式1)(p1p2pn)a a1 11 0.p1p(2pn1 1110计算行列式aa000100b1a11aa00(1)0a12b200b;(2)011aa0;3a30b011aa400a0400011a611111000161110100(3)11611;(4)0010.11161000111116k000a100b1a100b1a1b100解:解:(1)0a2b2000a4b4
15、a40b3a30 b40b3a300000ab33b400a40a2b2000b2a2a1b1a3b3ba(a1a4b1b4)(a2a3b2b3).44b2a2(2)将前 4 行依次加到第 5 行,再按第 5 行展开得1aa00011aa001aa00原式011aa0 a511aa00011aa011aaa00010011a91aa001aa0 a511aa0011aa a5a4 11aaa001011a1aa0 a5a4 11aa a5a4a31aaa0111a1aa2a3a4a56111110101010101611116111(3)11611 1161111161111611111611
16、116111111111116111050001011611 10 00500111610005011116000051054 6250.(4)按最后一行展开得1000010010001000010 k1000100001010001k000001000 k 511计算行列式1111x1111x11x1mx1x1(1)11x111;(2)x2x2mx21x1111x3x3x3mx11111x4x4x4解:解:(1)依次将第2,3,4,5列加到第 1 列得10 x1x2x3x4mx1111x1x111x11原式 x11x111x1x1111x111111111x1111x11(x1)11x111
17、1x1111111111000 x100 x0(x1)10 x001x000100004(41)(1)2(x1)x4 x4(x1)(2)依次将第2,3,4行加到第 1 行得4444xim1ximi1ximi1ximii1原式x2x2mx2x2x3x3x3mx3x4x4x4x4m11114(x mx2x2mx2x2i)i1x3x3x3mx3x4x4x4x4m1111(4x0m00im)i100m0000m4(mxi)m3i112计算行列式11a1b1a1b2a1b3a2b3a3b3a4b31a1b3a1b4a2b4;a3b4a4b41a1b4a2b1a2b2(1)a3b1a3b2a4b1a4b2
18、1a1b11a1b21a2b11a2b21a2b31a2b4(2)1a3b11a3b21a3b31a3b41a4b11a4b21a4b31a4b4(3)11000100a1a211;(4)1391xx2121411a301a4a1b11827x3解:(1)依次将第3,2,1行乘1加到第4,3,2行得a1b2a2a1a3a2a4a3a1b3a2a1a3a2a4a3a1b4a2a10a3a2a4a3a2a1原式a3a2a4a3(2)依次将第3,2,1行乘1加到第4,3,2行得1a1b11a1b21 a1b31 a1b4b1(a2a1)b2(a2a1)b3(a2a1)b4(a2a1)原式b1(a3a
19、2)b2(a3a2)b3(a3a2)b4(a3a2)b1(a4a3)b2(a4a3)b3(a4a3)b4(a4a3)1a1b11a1b21a1b31a1b4(a2a1)(a3a2)(a4a3)b1b1b1b2b2b21000b3b3b301b4b4b4101100(3)按最后一列展开得1原式a4101010000110a3110a2011a1001101a1a2a3a4(4)由 Vandermonde 行列式的计算公式得12原式(x3)(x2)(x1)(32)(31)(21)2(x1)(x2)(x3)13证明a11000a2x100(1)Da30 x00n2n a11xna2xan1xanan
20、100 x1an000 xa110000a2x1000ra0 x000证:等式左端n(x)rn13an200 x10an1000 x1anan1x000 x20a110000a2x1000rn(x2)rn2a30 x000rx3n()rn3rn1n(x)rnan200 x10an1000 x1f(x)000001x1(1)n1f(x)f(x)1x1(n1)阶其中f(x)an11xan1xan.13210121(2)D 0000002112 n1012000000证证:1n 1时,D1 2 112假 设 当n k时 结 论 成 立,当n k 1时,若k 1 2,D22112 413 21结论成立
21、.若k 13,将Dk1按第一行展开得21121Dk1 2DkDk1 2(k 1)(k 11)(k 1)1112由数学归纳法,对一切自然数n结论成立.1a1(3)D 11111an1111an1a10010a20111a2111ai(1i1i1nn1),ai 0,i 1,2,ai,n.证证:(用加边法)111101a111等式左端 011a2101111a1 1010100an10a20100an111a1a200011an11411(1a1a21)a1a2ananai(1i 1i 1nn1)等式右端.aixy1(4)Dnxyxy1000 xyxy00000 xy1000 xyxyxn 1yn
22、1,其中xy.xy000 x2y2证证:当n1时,D1xy,等式成立.xy假 设nk时 等 式 成 立,当nk 1时,若k 12,则x3y3Dk 1D2xxyy,等式成立.若k 13,将Dk 1按一列展开,得xyxyxy00022Dk 1(xy)(1)1 1100 xy10 xyxy000001xyk阶(1)2 1xy1000 xy100 xyxy00000001xyk阶xk 1yk 1xkykx(k 1)1y(k 1)1(xy)DkxyDk 1(xy)xyxyxyxy由归纳法原理,等式对一切自然数n都成立.14 设f(x)是一个次数不大于n 1的一元多项式,证明如果存在n个互不相同的数a1,
23、a2,an使f(ai)0,i 1,2,n.则f(x)0.k1xk0,依题意有n 1n 2证:证:设f(x)kn 1xkn 2xk0a1k1ka kn10因a1,a2,a1n 1kn 10(1)n 1ankn 10,an互不相同,故(1)的系数行列式151a1D 1a21an所以关于k0,k1,a122a2a1n1n1a21i jn2ann1an(ajai)0,,kn1的线性方程组(1)只有零解,所以k0k1kn10,f(x)0.15用 Cramer 法则解方程组5x14x211(1)6x 5x 2012解解:D 2524 1 0,方程组有唯一解.65114511D15580 25,D210066 34,由克莱姆法则,205620DDx11 25,x2234DD5x16x21(2)x15x26x3 0 x 5x 0235605630530解解:D 156 1519 119015010 5(19)(30)1 65 0,方程组有唯一解.545105616D 056 256 19D 106 5,1,2150501500515D 150 1.301010所以由克莱姆法则得,x1160561D119D11,x22,x3.D1365D6516
限制150内