地图的数学基础.ppt
《地图的数学基础.ppt》由会员分享,可在线阅读,更多相关《地图的数学基础.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三章 地图的数学基础第一节 地图投影的概念 地图投影是地图学重要组成部分之一,是构成地图的数学基础,在地图学中的地位是相当重要的。地图投影研究的对象就是如何将地球体表面描写到平面上,也就是研究建立地图投影的理论和方法,地图投影的产生、发展、直到现在,已有一千多年的历史,研究的领域也相当广泛,实际上它已经形成了一门独立的学科。我们学习投影的目的主要是了解和掌握最常用的最基本投影的性质和特点以及他们的变形分布规律,从而能够正确的辨认使用各种常用的投影。一、地球的形状和大小一、地球的形状和大小 地球作为地图投影的投影对象,有其独特的形状和大小,地球的形状是个球体,地球并不是一个正球体,而是一个极半
2、径略短、赤道半径略长,北极略突出、南极略扁平,近似于梨形的椭球体。能替代地球的是一个近似于旋转的椭圆体,称为地球椭球体,测绘工作中采用地球椭球体。地球椭球体的大小,由于推求所用资料、年代和方法不同,许多科学家所测定地球椭球体的大小也不尽相同,我国1953年以前采用海福特椭球体,从1953年起采用克拉索夫斯基椭球体,它的长半径(赤道半径)a=6378245m,短半径b=6356863m,偏率 d=a-b/a=1:298.3这是原苏联科学家克拉索夫斯基1940年测定的。由于地球椭球体长短半径差值很小,约21km,在制作小比例尺地图时,因为缩小的程度很大,若制作1:1000万地图,地球椭球体缩小10
3、00万倍,这时长短半径之差只是2.1mm,所以在制作小比例尺地图时,可忽略地球扁率,将地球视为圆球体,地球半径为6371km。制作大比例尺地图时必须将地球视为椭球体。二、地图表面和地球球面的矛盾二、地图表面和地球球面的矛盾 地图通常是绘在平面介质上的,而地球体表面是曲面,因此制图时首先需要把曲面展成平面,然而,球面是个不可展的曲面,要把球面直接展成平面,必然要发生断裂或褶皱。无论是将球面沿经线月牙切开,或是沿纬线切开,或是在极点结合,或是在赤道结合,他们都是有裂隙的。三、地图投影的概念三、地图投影的概念 球面上任一点的位置是用地理坐标(、)表示的,而平面上点的位置是用直角坐标(纵坐标是x,横坐
4、标是y)表示的,所以要将地球球面上的点转移到平面上,必须采用一定的数学方法来确定地理坐标与平面坐标之间的关系。这种在球面和平面之间建立点与点之间函数关系的数学方法,称为地图投影。投影演示 球面上任意一点的位置决定于它的经纬度,所以实际投影时是先将一些经纬线的交点展绘在平面上,再将相同经度的点连成经线,相同纬度的点连成纬线,构成经纬线网。有了经纬线网后,就可以将球面上的地理事物,按照其所在的经纬度,用一定的符号画在平面上相应位置处。由此看来,地图投影的实质是将地球椭球面上的经纬网按一定的数学法则转移到平面上。经纬线网是绘制地图的“基础”,是地图的主要数学要素。四、地图投影的方法四、地图投影的方法
5、 1.几何投影(透视投影)假想地球是一个透明体,光源位于球心,然后把球面上的经纬网投影到平面上,就得到一张球面经纬网投影。所不同的是,地图投影面除了平面之外,还有可展成平面的圆柱面和圆锥面;光源除了位于球心之外,还可以在球面、球外,或无穷远处等。象这样利用光源把地球面上的经纬网投影到平面上的方法叫做几何投影或者几何透视法。这是人们最早用来解决地球球面和地图平面这一对矛盾的一种方法。2.2.解析法解析法 随着科学生产的发展,几何透视法远远不能满足编制各种类型地图的需要,这样推动了地图投影的发展,出现了解析法。所谓解析法就是不借助于几何投影面(而仅仅借助于几何投影的方式),按照某些条件用数学分析法
6、确定球面与平面之间点与点之间一一对应的函数关系。X=f1(、)Y=f2(、)函数f1f2的具体形式,是由给定的投影条件确定的。有了这种对应关系式,就可把球面上的经纬网交点表示到平面上了。第二节 地图投影的变形一、变形的概念一、变形的概念 由于球面是一个不可直接展成平面的曲面,因此无论采用什么投影方法,得到经纬网的形状不同,它们与球面上的经纬网形状也是不完全相似的。这表明地图上的经纬网发生了变形。因而根据地理坐标展绘在地图上的各种地面事物。也必然发生了变形,为了正确使用地图,必须了解投影后产生的变形,所以投影变形问题是地图投影的重要组成部分。研究各种投影变形的大小和分布规律,具有重大的实际应用价
7、值。二、研究变形的方法二、研究变形的方法 研究各种投影的变形规律是通过把投影后的经纬线网与地球仪上经纬线网格比较而实现的。地球仪是地球的真实缩小。通过比较就会发现两者是不会相同的。为了研究变形方便首先让我们分析一下地球仪上经纬网的特点:1.地球仪上所有经线圈都是通过两极的大圆;长度相等;所有纬线除赤道是大圆外,其余都是小圆,并且从赤道向两极越来越小,在极地成为一点。换句话说纬线长度不等,赤道最长,随着纬度增高,极地为零。2.经线表示南北方向;纬线表示东西方向。3.经线和纬线是相互垂直的。4.纬差相等的经线弧长相等;同一条纬线上经差相等的纬线弧长相等,在不同的纬线上,经差相等的纬线弧长不等,而从
8、赤道向两极逐渐缩小。5.同一纬度带内,经差相同的经纬线网格面积相等,不同纬度带内,网格面积不等,同一经度带内,纬度越高,梯形面积越小。由低纬向高纬逐渐缩小。比 较三、投影变形的相关概念三、投影变形的相关概念 1.长度比和长度变形 设地球球面上有一微小线段ds,投影到平面上为ds,如图所示。平面上微小线段与球面上相应微小线段之比,叫做长度比。用公式表示为:=ds/ds 长度比是一个变量,它不仅随着点的位置不同而变化,还随着方向的变化而变化。长度比是指某点某方向上微小线段之比。通常研究长度比时,不一一研究各个方向的长度比,而只研究一些特定方向的长度比,即研究最大长度比(a)和最小长度比(b),经线
9、长度比(m)和纬线长度比(n)。投影后经纬线成直交者,经纬线长度比就是最大和最小长度比。投影后经纬线不直交,其夹角为,则经纬线长度比 m、n和最大、最小长度比a、b之间具有如下关系:根据解析几何中阿波隆尼亚定理m2+n2=a2+b2mnsin=ab 用长度比可以说明长度变形。所谓长度变形就是长度比()与1之差,用v表示长度变形则:v=-1 由此可知,长度变形有正负之分,长度变形为正,表示投影后长度增加;长度变形为负表示投影后长度缩短;长度变形为零,则长度无变形。2.主比例尺和局部比例尺 平常地图上注记的比例尺,称之为主比例尺地图上注记的比例尺,称之为主比例尺,它是运用地图投影方法绘制经纬线网时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 地图 数学 基础
限制150内