湖南省永州市新田县第一中学高中数学 24 数学归纳法课件 理 新人教A选修22.ppt
《湖南省永州市新田县第一中学高中数学 24 数学归纳法课件 理 新人教A选修22.ppt》由会员分享,可在线阅读,更多相关《湖南省永州市新田县第一中学高中数学 24 数学归纳法课件 理 新人教A选修22.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3 数学归纳法数学归纳法2021/8/8 星期日1问题问题 1:1:大球中有大球中有5 5个小球,如何证明它们都是个小球,如何证明它们都是 绿色的?绿色的?问题问题 2:2:完全归纳完全归纳法法 不不完全归完全归纳法纳法 问题情境一问题情境一2021/8/8 星期日2(1)不完全归纳法有利于发现问题,但结论)不完全归纳法有利于发现问题,但结论 不一定正确。不一定正确。(2)完全归纳法结论可靠,但一一核对困难。)完全归纳法结论可靠,但一一核对困难。说说 明:明:由两种归纳法得出的结论一定正确吗?由两种归纳法得出的结论一定正确吗?想 一 想 :例如:今天,据观察第一个到学校的是男同学,例如:今
2、天,据观察第一个到学校的是男同学,第二个到学校的也是男同学,第三个到学校的还是男第二个到学校的也是男同学,第三个到学校的还是男同学,于是得出:这所学校里的学生都是男同学。同学,于是得出:这所学校里的学生都是男同学。2021/8/8 星期日3 :由一系列有限的特殊事例得出:由一系列有限的特殊事例得出一般结论的推理方法一般结论的推理方法 结论一定可靠结论一定可靠结论结论不不一定可靠一定可靠考察考察全体全体对象对象,得到一般结论得到一般结论的推理方法的推理方法考察考察部分部分对象对象,得得到一般结论的推到一般结论的推理方法理方法归纳法分为归纳法分为完全归纳法完全归纳法 和和 不不完全归纳法完全归纳法
3、归纳法归纳法2021/8/8 星期日4(2)验证前一问题与后一问题)验证前一问题与后一问题有递推关系;有递推关系;(相当于前牌推倒后牌)(相当于前牌推倒后牌)如何解决不完全归纳法存在的问题呢?如何解决不完全归纳法存在的问题呢?如何保证骨牌一一倒下?需要几个步骤才如何保证骨牌一一倒下?需要几个步骤才能做到?能做到?(1 1)处理第一个问题;(相当于)处理第一个问题;(相当于推倒第一块骨牌)推倒第一块骨牌)问题情境二问题情境二P92 思考思考2021/8/8 星期日5思考思考:问题问题2中证明数列的通项公式中证明数列的通项公式 这个猜想这个猜想与上述多米诺骨牌游戏有相似性吗与上述多米诺骨牌游戏有相
4、似性吗?你能类比多米诺骨你能类比多米诺骨牌游戏解决这个问题吗牌游戏解决这个问题吗?由条件知由条件知,n=1时猜想成立时猜想成立.如如果果n=k时时猜猜想想成成立立,即即,那那么么当当n=k+1时时猜猜想想也也成成立立,即即事实事实上上,即即n=k+1时猜想也成立时猜想也成立.2021/8/8 星期日6 对于由不完全归纳法得到的某些与正整数有关的对于由不完全归纳法得到的某些与正整数有关的数学命题我们常采用下面的方法来证明它们的正确数学命题我们常采用下面的方法来证明它们的正确性:性:(1 1)证明当)证明当n n取第一个值取第一个值n n0 0(例如例如n n0 0=1)=1)时命题时命题成立成立
5、;(2 2)假设当)假设当n=k(kNn=k(kN*,k n,k n0 0)时命题成立时命题成立 证明当证明当n=k+1n=k+1时命题也成立时命题也成立.这种证明方法这种证明方法叫做叫做 数学归纳法数学归纳法数学归纳法数学归纳法【归纳递推】【归纳递推】【归纳奠基】【归纳奠基】2021/8/8 星期日7框图表示框图表示2021/8/8 星期日8(二)、数学归纳法的步骤(二)、数学归纳法的步骤根据根据(1)(2)知对任意的知对任意的 时命题成立。时命题成立。注:注:(1)证明当证明当 取第一个值取第一个值 或或 时结论正确时结论正确(2)假设当假设当 时结论正时结论正确,并证明当确,并证明当 时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省永州市新田县第一中学高中数学 24 数学归纳法课件 新人教A选修22 湖南省 永州市 新田县 第一 中学 高中数学 数学 归纳法 课件 新人 选修 22
限制150内